首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   3篇
农学   3篇
  5篇
畜牧兽医   3篇
园艺   1篇
植物保护   1篇
  2019年   2篇
  2016年   3篇
  2015年   2篇
  2014年   1篇
  2013年   3篇
  2012年   1篇
  2009年   1篇
排序方式: 共有13条查询结果,搜索用时 734 毫秒
1.
In the past five decades, constant research has been directed towards yield improvement in pigeonpea resulting in the deployment of several commercially acceptable cultivars in India. Though, the genesis of hybrid technology, the biggest breakthrough, enigma of stagnant productivity still remains unsolved. To sort this productivity disparity, genomic research along with conventional breeding was successfully initiated at ICRISAT. It endowed ample genomic resource providing insight in the pigeonpea genome combating production constraints in a precise and speedy manner. The availability of the draft genome sequence with a large‐scale marker resource, oriented the research towards trait mapping for flowering time, determinacy, fertility restoration, yield attributing traits and photo‐insensitivity. Defined core and mini‐core collection, still eased the pigeonpea breeding being accessible for existing genetic diversity and developing stress resistance. Modern genomic tools like next‐generation sequencing, genome‐wide selection helping in the appraisal of selection efficiency is leading towards next‐generation breeding, an awaited milestone in pigeonpea genetic enhancement. This paper emphasizes the ongoing genetic improvement in pigeonpea with an amalgam of conventional breeding as well as genomic research.  相似文献   
2.
Several previous field studies in temperate regions have shown decreased soil respiration after conventional tillage compared with reduced or no‐tillage treatments. Whether this decrease is due to differences in plant residue distribution or changes in soil structure following tillage remains an open question. This study investigated (1) the effects of residue management and incorporation depth on soil respiration and (2) biological activity in different post‐tillage aggregates representing the actual size and distribution of aggregates observed in the tilled layer. The study was conducted within a long‐term tillage experiment on a clay soil (Eutric Cambisol) in Uppsala, Sweden. After 38 y, four replicate plots in two long‐term treatments (moldboard plowing (MP) and shallow tillage (ST)) were split into three subplots. These were then used for a short‐term trial in which crop residues were either removed, left on the surface or incorporated to about 6 cm depth (ST) or at 20 cm depth (MP). Soil respiration, soil temperature, and water content were monitored during a 10‐d period after tillage treatment. Respiration from aggregates of different sizes produced by ST and MP was also measured at constant water potential and temperature in the laboratory. The results showed that MP decreased short‐term soil respiration compared with ST or no tillage. Small aggregates (< 16 mm) were biologically most active, irrespective of tillage method, but due to their low proportion of total soil mass they contributed < 1.5% to total respiration from the tilled layer. Differences in respiration between tillage treatments were found to be attributable to indirect effects on soil moisture and temperature profiles and the depth distribution of crop residues, rather than to physical disturbance of the soil.  相似文献   
3.
Chickpea (Cicer arietinum L.) is a dry season food legume largely grown on residual soil moisture after the rainy season. The crop often experiences moisture stress towards end of the crop season (terminal drought). The crop may also face heat stress at the reproductive stage if sowing is delayed. The breeding approaches for improving adaptation to these stresses include the development of varieties with early maturity and enhanced abiotic stress tolerance. Several varieties with improved drought tolerance have been developed by selecting for grain yield under moisture stress conditions. Similarly, selection for pod set in the crop subjected to heat stress during reproductive stage has helped in the development of heat‐tolerant varieties. A genomic region, called QTL‐hotspot, controlling several drought tolerance‐related traits has been introgressed into several popular cultivars using marker‐assisted backcrossing (MABC), and introgression lines giving significantly higher yield than the popular cultivars have been identified. Multiparent advanced generation intercross (MAGIC) approach has been found promising in enhancing genetic recombination and developing lines with enhanced tolerance to terminal drought and heat stresses.  相似文献   
4.

Background

Methicillin resistant Staphylococcus pseudintermedius (MRSP) and Staphylococcus aureus (MRSA) are common multi-drug resistant (MDR) bacteria in dogs. In 2012–2013 three dogs of the Guide Dog School of the Finnish Federation of the Visually Impaired were found to be MRSP positive. Guide dogs have regular contact with each other during their first year of life and prolonged contact when in training. Since dogs are placed in different parts of Finland after training, there is a risk for national spread of MDR bacteria. In this study the prevalence of MRSP and MRSA, as well as the risk factors for MRSP were determined in the Finnish guide dog population. MRSP isolates were investigated using molecular methods and compared to the earlier isolates.

Results

Out of 132 tested dogs 4 were MRSP positive thus giving the prevalence estimate of 3% (95% CI: 1–8%) for MRSP in the target population. MRSA was not detected (prevalence estimate 0%, 95% CI: 0–3%). Risk factors associated with MRSP were being a breeding bitch (OR = 8.4; 95% CI: 1.1–64.1, P = 0.012), the number of veterinary visits (OR = 1.23; 95% CI: 1.0–1.5, P = 0.025) and number of antimicrobial courses (OR = 1.63; 95% CI: 1.0–2.55; P = 0.035). Identified MRSP isolates belonged to five different sequence types (ST45, 71, 402, 403 and 404). All ST71 isolates carried SCCmec II-III, while the SCCmec type of the ST45 and ST402 (a single locus variant of ST45) isolates were non-typeable with the method used.

Conclusions

MRSP and MRSA had low prevalence in the studied dog population despite the close contact between dogs, and the MRSP population was heterogenic. Antimicrobial therapy and veterinary visits are risk factors for MRSP even among a small case group.

Electronic supplementary material

The online version of this article (doi:10.1186/s13028-015-0129-8) contains supplementary material, which is available to authorized users.  相似文献   
5.
Reduced tillage is proposed as a method of C sequestration in agricultural soils. However, tillage effects on organic matter turnover are often contradictory and data are lacking on how tillage practices affect soil respiration in northern Europe. This field study (1) quantified the short-term effects of different tillage methods and timing on soil respiration and N mineralisation and (2) examined changes in aggregate size distribution due to different tillage operations and how these relate to soil respiration. The study was conducted on Swedish clay soil (Eutric Cambisol) and compared no-tillage with three forms of tillage applied in early or late autumn 2010: mouldboard ploughing to 20–22 cm and chisel ploughing to 12 or 5 cm depth. Soil respiration, soil temperature, gravimetric water content, mineral N and aggregate size distribution were measured. The results showed that respiration was significantly higher (P?<?0.001) in no-till than in tilled plots during the 2 weeks following tillage in early September. Later tillage gave a similar trend but treatments did not differ significantly. Soil tillage and temperature explained 56 % of the variation in respiration. In the early tillage treatment, soil respiration decreased with tillage depth. Mineral N status was not affected by tillage treatment or timing. Soil water content did not differ significantly between tillage practices and therefore did not explain differences in respiration. The results indicate that conventional tillage in early autumn may reduce short-term soil respiration compared with chisel ploughing and no-till in clay soils in northern Europe.  相似文献   
6.

Purpose

Previous investigations—field samplings and laboratory experiments—support the hypothesis that the degradation of s-triazines is enhanced in previously exposed as compared to pristine soils in terrestrial environments. Despite this, bottlenecks of soil sampling and various soil modification practices in microcosm studies have made it difficult to guarantee that previous contamination history enhances contaminant degradation regardless of soil origin in terrestrial ecosystems. We test the hypothesis that the degradation of simazine (2-chloro-4,6-bis(ethylamino)-s-triazine) is enhanced in previously exposed soils as compared to pristine soils in 10 l buckets at the mesocosm scale.

Materials and methods

We collected soil at three separate sites consisting of a previously exposed and a pristine field. At every field, soil was collected at three separate plots and simazine degradation (days 0 and 65) and the response to atzB degrader gene primers (days 0 and 110) were followed. We analyzed the results using analysis of covariance (ANCOVA). Previous exposure and field site were assessed as fixed factors and initial simazine concentration and abiotic soil conditions as covariates.

Results and discussion

After the 65-day exposure, remaining simazine concentrations depended on previous exposure but not on collection site. The response to atzB gene primers was positive in all mesocosms where simazine degradation had been rapid. Soil moisture, pH, and organic matter content were insignificant. If soil moisture was not included in the ANCOVA model, previous exposure did not appear as a significant factor.

Conclusions

The results support the hypothesis that simazine is degraded more rapidly in previously exposed soils as compared to pristine environments, provided that degradation genes are available. Previously exposed soil might be used to enhance the degradation of simazine in recently contaminated terrestrial soils, supposing that the central requirements for microbial growth are adequate.  相似文献   
7.
Sorption and degradation are the primary processes controlling the efficacy and runoff contamination risk of agrochemicals. Considering the longevity of biochar in agroecosystems, biochar soil amendment must be carefully evaluated on the basis of the target agrochemical and soil types to achieve agricultural (minimum impact on efficacy) and environmental (minimum runoff contamination) benefits. In this study, sorption-desorption isotherms and kinetics of triazine (deisopropylatrazine) and organophosphorus (malathion, parathion, and diazinon) pesticides were first investigated on various soil types ranging from clayey, acidic Puerto Rican forest soil (PR) to heavy metal contaminated small arms range (SAR) soils of sandy and peaty nature. On PR, malathion sorption did not reach equilibrium during the 3 week study. Comparison of solution-phase molar phosphorus and agrochemical concentrations suggested that degradation products of organophosphorus pesticides were bound on soil surfaces. The degree of sorption on different soils showed the following increasing trend: deisopropylatrazine < malathion < diazinon < parathion. While sorption of deisopropylatrazine on SAR soils was not affected by diazinon or malathion, deisopropylatrazine suppressed the sorption of diazinon and malathion. Deisopropylatrazine irreversibly sorbed on biochars, and greater sorption was observed with higher Brunauer-Emmett-Teller surface area of biochar (4.7-2061 mg g(-1)). The results suggested the utility of biochar for remediation of sites where concentrations of highly stable and mobile agrochemicals exceed the water-quality benchmarks.  相似文献   
8.
Pigeonpea (Cajanus cajan [L.] Millspaugh) is an important multipurpose grain legume crop primarily grown in tropical and subtropical areas of Asia, Africa and Latin America. In Africa, the crop is grown for several purposes including food security, income generation, livestock feed and in agroforestry. Production in Eastern and Southern Africa (ESA) is however faced with many challenges including limited use of high‐yielding cultivars, diseases and pests, drought, under‐investment in research and lack of scientific expertise. The aim of this review is to highlight the challenges facing pigeonpea breeding research in ESA and the existing opportunities for improving the overall pigeonpea subsector in the region. We discuss the potential of the recently available pigeonpea genomic resources for accelerated molecular breeding, the prospects for conventional breeding and commercial hybrid pigeonpea, and the relevant seed policies, among others, which are viewed as opportunities to enhance pigeonpea productivity.  相似文献   
9.
Previous field studies in N Europe have shown that the impact of soil tillage on soil respiration is mostly indirect, caused by altered distribution of plant residues in soil affecting decomposition of residues. Tillage operations alter soil moisture and temperature conditions in soil, which control decomposition dynamics. Experiments under laboratory conditions allow indirect effects of altered residue decomposition to be distinguished from direct effects of mechanical disruption, i.e., the increased exposure of substrates within aggregates and micropores upon tillage. This study examined the effects of physical disruption of soils with different soil texture, land‐use history, and soil organic C content on soil respiration under controlled abiotic conditions. Undisturbed soil samples from 7 sites (arable land and grassland) were incubated at 20°C and three different water potentials (–1, –10, and –30 kPa). Soil respiration was measured before and after physical disruption with laboratory homogenizer, using an automated respiration apparatus. Soil organic C, water content, and bulk density explained 67% of the variation in base respiration. In half of the disrupted samples, bulk density was re‐adjusted by re‐compaction to conditions prevailing before disruption. Disruption and re‐compaction generally resulted in higher respiration flushes than disruption alone. Respiration peaks increased with water content. However, total C losses were small and corresponded to < 0.1 Mg C ha?1. Overall, physical soil disruption increased decomposition of soil organic matter only marginally and temporarily. It would be difficult to detect an effect of tillage on soil organic matter decomposition under field conditions.  相似文献   
10.
Adventitious shoot regeneration and protoplast isolation and culture were examined from leaf explants of in vitro shoot cultures of several cauliflower (Brassica oleracea var. botrytis) cultivars, sourced from Europe and Australia, was investigated with the aim to develop improved nuclear and plastid transformation protocols for this vegetable crop. Eight out of 10 cultivars regenerated shoots from at least 79% of leaf explants. Mesophyll protoplasts from leaves gave high yields and division frequencies. Growth of shoot cultures in large glass vessels with vented lids was the key factor in obtaining high protoplast division frequencies of up to 71% and at least 70% of protoplast calluses regenerating shoots.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号