首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  3篇
  2001年   1篇
  1998年   1篇
  1995年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Temporal trends in sulfate, base cation (Ca2+ + Mg2+ + K+), and H+ ion concentrations in bulk precipitation and throughfall samples collected over a seven year period (1989-95) in four forested catchments in Finland are presented. The catchments are in remote locations and span the boreal zone (61-69 °N). The stands represent old, undisturbed forests, and are composed of varying proportions of Scots pine, Norway spruce and deciduous species (mainly Betula spp.). Monthly SO4 2- and H+ ion concentrations in bulk precipitation averaged over the study period and catchments were: 18.7 µmol L-1 and 32.3 µmol L-1. The corresponding values for throughfall were: 37.4 µmol L-1 and 32.4 µmol L-1. Sulfate and H+ ion concentrations in bulk precipitation and throughfall both showed negative linear trends, which were significant (p < 0.05) for the three southernmost catchments. Concentrations and trend slope decreased northwards (e.g., bulk precipitation SO4 2- slope estimates: -1.6 to -1.0 µmol L-1 yr-1). The decline was greater for throughfall than for bulk precipitation, indicating a proportionally greater reduction in dry deposition than wet. The sum of base cation concentrations averaged 12.1 µmol(+) L-1 in bulk precipitation and 83.1 µmol(+) L-1 in throughfall. There were no significant trends in the sum of base cations (p > 0.05). It is concluded that the reported reduction in S emissions over the study period has resulted in a significant reduction in the acidity and SO4 2- concentration of bulk precipitation, and this reduction has has been reflected in throughfall concentrations. The greatest reduction has taken place in the southern part of the country.  相似文献   
2.
Ion mass and H+ budgets were calculated for three pristine forested catchments using bulk deposition, throughfall and runoff data. The catchments have different soil and forest type characteristics. A forest canopy filtering factor for each catchment was estimated for base cations, H+, Cl? and SO 4 2? by taking into account the specific filtering abilities of different stands based on the throughfall quality and the distribution of forest types. Output fluxes from the catchments were calculated from the quality and quantity of the runoff water. Deposition, weathering, ion exchange, retention and biological accumulation processes were taken into account to calculate catchment H+ budgets, and the ratio between external (anthropogenic) and internal H+ sources. In general, output exceeded input for Na+, K+, Ca2+, Mg2+, HCO 3 ? (if present) and A? (organic anions), whereas retention was observed in the case of H+, NH 4 + , NO 3 ? and SO 4 2? . The range in the annual input of H+ was 22.8–26.3 meq m?2 yr?1, and in the annual output, 0.3–3.9 meq m?2 yr?1. Compared with some forested sites located in high acid deposition areas in southern Scandinavia, Scotland and Canada, the catchments receive rather moderate loads of acidic deposition. The consumption of H+ was dominated by base cation exchange plus weathering reactions (41–79 %), and by the retention of SO 4 2? (17–49 %). The maximum net retention of SO 4 2? was 87% in the HietajÄrvi 2 catchment, having the highest proportion of peatlands. Nitrogen transformations played a rather minor role in the H+ budgets. The ratio between external and internal H+ sources (excluding net base cation uptake by forests) varied between 0.74 and 2.62, depending on catchment characteristics and acidic deposition loads. The impact of the acidic deposition was most evident for the southern Valkeakotinen catchment, where the anthropogenic acidification has been documented also by palaeolimnological methods.  相似文献   
3.
A characteristic of daily acid deposition data, in particular at remote sites, is the occurrence of some extreme peaks above the base level of moderate values. A large proportion of the annual acid deposition is accumulated in a few days: 5 worst days at the Finnish background stations can bring 20–30 % of the annual bulk sulphate load. The aim of this study was to determine whether there is a difference between stations in the number of extreme daily bulk acid depositions. The bulk deposition of sulphate in the 1990's at five Finnish monitoring stations was used as a reference. Days on which the deposition value exceeded the annual median value of the station by a factor of 10 were counted as episode days. The number of episode days in central and northern Finland differed significantly (p<0.05) from the number in the south, when tested with the non-parametric Kruskal-Wallis test. The episodes cannot be completely explained by high precipitation amounts: the mean sulphate concentration in episodic rain was higher than the annual mean concentration. The episodes were mostly imported: the air mass arriving at the station had passed over areas with high emissions outside Finland. A more exact knowledge of the episodicity benefits an examination of the ecological stress caused by acid deposition as well as a study of the critical load and the crossing of this threshold.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号