首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   3篇
  国内免费   2篇
林业   3篇
农学   8篇
基础科学   4篇
  6篇
综合类   9篇
农作物   3篇
水产渔业   1篇
畜牧兽医   4篇
园艺   1篇
植物保护   1篇
  2021年   1篇
  2019年   1篇
  2018年   4篇
  2017年   5篇
  2016年   1篇
  2014年   1篇
  2013年   3篇
  2012年   1篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   3篇
  2004年   1篇
  2001年   1篇
  2000年   1篇
  1997年   1篇
  1996年   1篇
  1990年   2篇
  1985年   1篇
  1984年   1篇
  1974年   1篇
  1972年   1篇
  1970年   1篇
  1968年   1篇
  1967年   1篇
  1965年   1篇
排序方式: 共有40条查询结果,搜索用时 647 毫秒
1.
2.
Drought is a major abiotic constraint for rice production worldwide. The quantitative trait loci (QTLs) for drought tolerance traits identified in earlier studies have large confidence intervals due to low density linkage maps. Further, these studies largely focused on the above ground traits. Therefore, this study aims to identify QTLs for root and shoot traits at the vegetative growth stage using a genotyping by sequencing (GBS) based saturated SNP linkage map. A recombinant inbred line (RIL) population from a cross between Cocodrie and N-22 was evaluated for eight morphological traits under drought stress. Drought was imposed to plants grown in 75 cm long plastic pots at the vegetative growth stage. Using a saturated SNP linkage map, 14 additive QTLs were identified for root length, shoot length, fresh root mass, fresh shoot mass, number of tillers, dry root mass, dry shoot mass, and root-shoot ratio. Majority of the drought responsive QTLs were located on chromosome 1. The expression of QTLs varied under stress and irrigated condition. Shoot length QTLs qSL1.38 and qSL1.11 were congruent to dry shoot mass QTL qDSM1.38 and dry root mass QTL qDRM1.11, respectively. Analysis of genes present within QTL confidence intervals revealed many potential candidate genes such as laccase, Calvin cycle protein, serine threonine protein kinase, heat shock protein, and WRKY protein. Another important gene, Brevis radix, present in the root length QTL region, was known to modulate root growth through cell proliferation and elongation. The candidate genes and the QTL information will be helpful for marker-assisted pyramiding to improve drought tolerance in rice.  相似文献   
3.
The importance of fast-trackt generation advancement in developing superior germplasm has been recognized in breeding of many crop species. To address this issue in tomato, immature seeds were excised from fruit at different maturity stages and transferred to culture medium. The best culture medium was modified full strength Moorashige–Skoog (MS) salts supplemented with 0.1 mg l−1 IAA, 0.5 mg l−1 IBA, 0.5 mg l−1 GA3 and 2% sucrose. If the excised seeds were able to grow, most showed shoot formation after a week. Seeds extracted as early as 10 days after pollination were successfully cultured provided they were transferred aseptically and without injury. No morphological or physiological changes in regenerated plants and their fruit relative to the parent were detected. Germination from immature seeds of tomato is a simpler alternative to in vitro culture of immature embryos or callus, as it can be undertaken in comparatively less stringent laboratory conditions. Using this approach, five generations can be produced in a year in contrast to a maximum of three generations with conventional methods. This offers an opportunity for rapid generation advancement aimed towards population development when coupled with marker assisted selection in tomato breeding for biotic and abiotic stress tolerance.  相似文献   
4.
Overland transport kinetics of pathogens is controlled, in large part, by soil and vegetation. With an increasing number of concentrated animal operations, there is becoming a greater need to dispose of a vast amount of manure in a single, localized area. Animal manure contains a substantial amount of microbial pathogens, including Cryptosporidium parvum that may pose a threat of contamination of water resources. This study examines the kinetics of C. parvum in overland transport and critical factors involved in the design of best management practices, especially vegetative filter strips, to prevent the transport of harmful pathogens to water bodies. Three soil types were tested (Catlin silt-loam, Alvin fine sandy-loam, Darwin silty-clay), spanning the entire spectrum of typical Illinois soils. A 20-min rainfall event was produced using a small-scale (1.07 m?×?0.66 m) laboratory rainfall simulator over a soil box measuring 0.67 m?×?0.33 m. Each soil type was tested for pathogen transport kinetics with bare surface conditions as well as with smooth brome and fescue vegetative covers. Surface runoff, soil cores, and near-surface runoff were each analyzed for infective C. parvum oocysts using cell culture infectivity assays. Results showed that vegetation greatly reduced the recovery of infective oocysts, in addition to delaying the time to the peak recovery. However, there was no clear evidence of any one vegetation type being advantageous over another. The bare soil experiments resulted in a higher recovery of C. parvum oocysts from the Darwin soil compared to other two soils. Analyses of soil cores show a slightly higher recovery of oocysts in the Catlin soil compared to Alvin or Darwin soils.  相似文献   
5.
Most trickle irrigation in the world is surface drip yet subsurface drip irrigation (SDI) can substantially improve irrigation water use efficiency (IWUE) by minimizing evaporative loss and maximizing capture of in-season rainfall by the soil profile. However, SDI emitters are placed at depths, and in many soil types sustained wetting fronts are created that lead to hypoxia of the rhizosphere, which is detrimental to effective plant functioning. Oxygation (aerated irrigation water) can ameliorate hypoxia of SDI crops and realize the full benefit of SDI systems. Oxygation effects on yield, WUE and rooting patterns of soybean, chickpeas, and pumpkin in glasshouse and field trials with SDI at different emitter depths (5, 15, 25, and 35 cm) were evaluated. The effect of oxygation was prominent with increasing emitter depths due to the alleviation of hypoxia. The effect of oxygation on yield in the shallow-rooted crop vegetable soybean was greatest (+43%), and moderate on medium (chickpea +11%) and deep-rooted crops (pumpkin +15%). Oxygation invariably increased season-long WUE (WUEsl) for fruit and biomass yield and instantaneous leaf transpiration rate. In general, the beneficial effects of oxygation at greater SDI depth on a heavy clay soil were mediated through greater root activity, as observed by general increase in root weight, root length density, and soil respiration in the trialed species. Our data show increased moisture content at depth with a lower soil oxygen concentration causing hypoxia. Oxygation offsets to a degree the negative effect of deep emitter placement on yield and WUE of SDI crops.  相似文献   
6.
The alkaloidal fraction obtained from an ethanolic extract of the leaves of Mikania cordata exhibited significant in vivo antiulcer activity in diclofenac sodium-induced gastric erosions in Long Evans rats.  相似文献   
7.
Water logging and salinity of the soil alter both the physical and biological environment of plant roots. In two experiments, we investigated the effects of imposed aeration on yield and the physiological response of tomato (Lycopersicon esculentum L.) variety Improved Apollo growing under protected conditions over a range of salinities (the salinity experiment), and under constant field capacity (FC) or drier soil conditions (the moisture experiment). Subsurface irrigation with aerated water (12% air in water) stimulated above-ground growth, and enhanced the reproductive performance through earliness for flowering and fruiting compared with the control. Fruit yield of tomato with aeration in the moisture experiment was increased by 21% compared with the control (4.2 kg versus 3.7 kg per plant), and the effect of aeration on fruit yield was greater in FC than in the drier treatment. Fruit yield was increased by 38% in saline soil due to aeration compared with the non-aerated control. Increasing salinity from 2 to 8.8 dS m−1, and 10 dS m−1 reduced fruit yield by 18% and 62%, respectively, but 4 dS m−1 did not suppress yield. Aeration in both the experiments increased plant water use and water use efficiency (WUE), expressed as weight per unit of applied water. Biomass WUE was greater by 16% and 32% in the moisture and salinity experiments, respectively. The increased yield with aeration was also accompanied by an increased harvest index (HI) defined as the proportion of dry fruit biomass to total dry biomass, greater mean fruit weight, high fruit DM, and increase in leaf chlorophyll content and shoot: root ratio, and a reduced water stress index (computed from the difference between air and leaf temperature). The benefit gained from aerating irrigation water was not only observed under conditions where air-filled porosity may be low (e.g., in poorly structure sodic soils, or at field capacity in clay soils), but also in drier soils.  相似文献   
8.
Mind assault     
  相似文献   
9.
Herpes simplex virus in mice: electron microscopy of neural spread   总被引:6,自引:0,他引:6  
Herpes simplex virus rapidly infected the trigeminal nerves of mice after intranasal inoculation. Centripetal neural spread was suggested by histologic evidence of encephalitis in the area of attachment of the trigeminal nerve. Furthermore, electron microscopy revealed virus replication primarily within Schwann cells of the trigeminal nerve, and neurons of the gasserian ganglion.  相似文献   
10.
The Azospirillum 10SW used in our experiments was isolated from roots of wheat growing in nitrogen-poor soil of a hilly region of Nepal, where inorganic nitrogen fertilizers were never used. The main objectives of this work were to assess the effects of inorganic nitrogen fertilization in the yield responses of wheat grown in association with the bacteria. The in vitro experiments were done in laboratory, whereas the pot experiments were performed in a greenhouse. The nitrogenase activities of in vitro grown Azospirillum were repressed by nitrate. The magnitude of repression was lower when the bacteria were growing in association with wheat. The number of roots per plant was increased significantly in inoculated plants irrespective of the nitrate concentration of the medium. Inoculation with Azospirillum 10SW also increased the yield of wheat grown in pots with medium levels of nitrogen fertilization. These data show the possibility of inoculation of this Azospirillum spp. in combination with nitrogen fertilizer to improve the yield of wheat. Azospirillum inoculation enhanced the development of roots and shoots in the early growth stages of wheat. It may be one of the factors responsible for the yield increases. Received: 11 December 1996  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号