首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   173篇
  免费   11篇
林业   8篇
农学   12篇
基础科学   4篇
  48篇
综合类   11篇
农作物   15篇
水产渔业   13篇
畜牧兽医   39篇
园艺   3篇
植物保护   31篇
  2023年   1篇
  2022年   2篇
  2021年   7篇
  2020年   4篇
  2019年   5篇
  2018年   9篇
  2017年   7篇
  2016年   13篇
  2015年   7篇
  2014年   8篇
  2013年   23篇
  2012年   13篇
  2011年   8篇
  2010年   8篇
  2009年   8篇
  2008年   13篇
  2007年   2篇
  2006年   5篇
  2005年   3篇
  2004年   4篇
  2002年   1篇
  2000年   1篇
  1998年   1篇
  1997年   4篇
  1996年   3篇
  1994年   2篇
  1993年   4篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1987年   1篇
  1983年   5篇
  1982年   1篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1974年   1篇
  1968年   1篇
排序方式: 共有184条查询结果,搜索用时 78 毫秒
1.
A pot experiment was conducted in a climate‐controlled greenhouse to investigate the growth, physiology and yield of potato in response to salinity stress under biochar amendment. It was hypothesized that addition of biochar may improve plant growth and yield by mitigating the negative effect of salinity through its high sorption ability. From tuber bulking to harvesting, the plants were exposed to three saline irrigations, that is 0, 25 and 50 mm NaCl solutions, respectively, and two levels of biochar (0 % and 5 % W/W) treatments. An adsorption study was also conducted to study the Na+ adsorption capability of biochar. Results indicated that biochar was capable to ameliorate salinity stress by adsorbing Na+. Increasing salinity level resulted in significant reductions of shoot biomass, root length and volume, tuber yield, photosynthetic rate (An), stomatal conductance (gs), midday leaf water potential, but increased abscisic acid (ABA) concentration in both leaf and xylem sap. At each salinity level, incorporation of biochar increased shoot biomass, root length and volume, tuber yield, An, gs, midday leaf water potential, and decreased ABA concentration in the leaf and xylem sap as compared with the respective non‐biochar control. Decreased Na+, Na+/K+ ratio and increased K+ content in xylem with biochar amendment also indicated its ameliorative effects on potato plants in response to salinity stress. The results suggested that incorporation of biochar might be a promising approach for enhancing crop productivity in salt‐affected soils.  相似文献   
2.
Plants display an array of classical strategies to maximize phosphate (Pi) acquisition from sparingly soluble P sources. Acclimation to Pi-stress via elegant Pi-starvation induced (PSI) adjustments would reduce our current overreliance on expensive, polluting and non-renewable Pi-fertilizers. Nevertheless, differences in the ability of various species to solubilize sparingly soluble P-sources have been often evidenced; inter-cultivar variations are scarcely documented. Brassica is known as an effective, non-mycorrhizal user of sparingly soluble P-sources. Various growth parameters and biomass accumulation by genetically diverse Brassica cultivars were determined in four experiments using hydroponics and quartz sand culture media. Role of PSI root mediated pH changes, organic anions (OAs) exudation and altered root architecture in mobilization and acquisition of sparingly soluble P-forms [Jordan rock-P (RP) at 2 g l−1 and Ca3(PO4)2 (TCP) at 0.2 g l−1 respectively] was investigated. Cultivars showed considerable genetic variations in biomass accumulation, various growth parameters and root–shoot ratio. Concentration and total uptake of P, specific absorption rate of P, P-transport rate and P-utilization efficiency (PUE) were also significantly (P < 0.001) different for various cultivars and their dry matter was significantly correlated with P-uptake [r = 0.94** (significant at 1% level)]. P-tolerant cultivars showed substantial decrease in solution media pH because of H+ efflux and exuded more carboxylates than low P-sensitive cultivars under P-starvation. P-uptake by cultivars increased linearly with decreasing pH. The amount and types of OAs exuded from the roots of P-starved plants differed from those of plants grown under P-sufficient environment. In split pot study, with TCP and RP supplied spatially separated from other nutrients, efficient cultivars were still able to mobilize RP and TCP more efficiently than inefficient cultivars. In rhizobox study, the elongation rates of primary roots decreased but the elongation rates of the branched zones of primary roots and the length of lateral roots increased under P-starvation. Tested cultivars showed genetic diversity in accessing, mobilization, acquisition and utilization of Pi from sparingly soluble P forms. An arrange marriage of plant traits can explain cultivar’s access to different forms of sparingly soluble P, and in addition to altered lateral root topology and enhanced P-uptake and PUE, enhanced H+ efflux and OAs exudation are key factors in Pi scavenging from extra cellular sparingly soluble P-forms.  相似文献   
3.
Field and pot experiments were conducted to evaluate the effect of co-cultivation and crop rotation on the growth and corm rot disease of gladiolus (Gladiolus grandiflorus sect. Blandus) cv. Aarti caused by Fusarium oxysporum f.sp. gladioli (Massey) Snyd. and Hans. In the field experiment, gladiolus was co-cultivated with 10 agricultural/horticultural crops viz. Allium cepa L., Brassica campestris L., Capsicum annuum L., Eruca sativa Mill., Helianthus annuus L., Tagetes erectus L., Zea mays L., Vinca rosea L. and Rosa indica L., in a soil infested with F. oxysporum. All the crops except V. rosea and R. indica reduced disease incidence. The effect of H. annuus and T. erectus was significant and more pronounced than other co-cultivated crops. In general, root and shoot dry biomass, corm fresh weight, number of cormlets and number of flowers per spike decreased as compared to the un-inoculated monoculture gladiolus treatment (negative control) but these parameters enhanced as compared to the F. oxysporum inoculated monoculture gladiolus treatment (positive control). In a pot experiment, all the crops of the field experiment except V. rosea and R. indica were sown in rotation with gladiolus. Pot grown plants of different species were harvested at maturity and the soil was inoculated with F. oxysporum. Gladiolus was cultivated 1 week after inoculation. Disease incidence was significantly suppressed in all the treatments ranging from 29% to 53%. The highest suppression of disease incidence was recorded in T. erectus (53%) followed by B. campestris (49%). The effect of preceding crops on various vegetative parameters was similar in the pot experiment to that of the field experiment. The present study suggests that corm rot disease of gladiolus can be managed by mixed cropping of H. annuus and T. erectus or cultivation of T. erectus and B. campestris in rotation.  相似文献   
4.
The sorption efficiency of indigenous rice (Oryza sativa) bran for the removal of organics, that is, benzene, toluene, ethylbenzene, and cumene (BTEC), from aqueous solutions has been studied. The sorption of BTEC by rice bran is observed over a wide pH range of 1-10, indicating its high applicability to remove these organics from various industrial effluents. Rice bran effectively adsorbs BTEC of 10 microg mL(-1) sorbate concentration from water at temperatures of 283-323 +/- 2 K. The effect of pH, agitation time between solid and liquid phases, sorbent dose, its particle size, and temperature on the sorption of BTEC onto rice bran has been studied. The pore area and average pore diameter of rice bran by BET method are found to be 19 +/- 0.7 m(2) g(-1) and 52.8 +/- 1.3 nm. The rice bran exhibits appreciable sorption of the order of 85 +/- 3.5, 91 +/- 1.8, 94 +/- 1.4, and 96 +/- 1.2% for 10 microg mL(-1) concentration of benzene, toluene, ethylbenzene, and cumene, respectively, in 60 min of agitation time using 0.1 g of rice bran at pH 6 and 303 K. The sorption data follow Freundlich, Langmuir, and Dubinin-Radushkevich (D-R) models. Sorption capacities have been computed for BTEC by Freundlich (32 +/- 3, 61 +/- 14, 123 +/- 28, and 142 +/- 37 m mol g(-1)), Langmuir (6.6 +/- 0.1, 7.5 +/- 0.13, 9.5 +/- 0.22, and 9.4 +/- 0.18 m mol g(-1)), and D-R isotherms (11 +/- 0.5, 16 +/- 1.3, 30 +/- 2.2, and 33 +/- 2.5 m mol g(-1)), respectively. The Lagergren equation is employed for the kinetics of the sorption of BTEC onto rice bran and first-order rate constants (0.03 +/- 0.002, 0.04 +/- 0.003, 0.04 +/- 0.003, and 0.05 +/- 0.004 min(-1)) have been computed for BTEC at their concentration of 100 mug mL(-1) at 303 K. Studies on the variation of sorption with temperatures (283-323 K) at 100 mug mL(-1) sorbate concentration gave thermodynamic constants DeltaH (kJ mol(-1)), DeltaG (kJ mol(-1)), and DeltaS (J mol(-1) K(-1)). The results indicate that the sorption of organics onto rice bran is exothermic and spontaneous in nature under the optimized experimental conditions selected. This sorbent has been used successfully to accumulate and then to determine benzene, toluene, and ethylbenzene in wastewater sample.  相似文献   
5.
The impact of soil (1, 2 kg ha?1) and foliar (100, 200 mg L?1) boron (B) with control (no B) was evaluated on phenology and yield formation of Camelina each applied at stem elongation and flowering stages. Foliar (200 mg L?1) or soil B (2 kg ha?1) resulted in earlier flowering and maturity, increased fruit bearing branches (19.68%), number of siliqua, seeds per siliqua (4.6%), biological yield (15%), seed yield (24%), harvest index (11.4%) and oil contents (23%) than no B. Increased fruit bearing branches, seed filled siliqua or seed numbers, harvest index and oil quality can be attributed to changes in dry matter accumulated of stem with simultaneous increase in siliqua dry weight with foliar or soil applied B. In crux, foliar (200 mg L?1) or soil applied (2 kg ha?1) B seems promising to improve seed and oil yield, harvest index of Camelina sativa under B deficient condition.  相似文献   
6.
The biological response modifier human beta-interferon had pronounced antigrowth effects on various histologic types of human brain tumor cells but no effects on a nontransformed cell line, MRC-5. The cultures of brain tumor cells showed severe alterations indicative of cell injury and death after exposure to beta-interferon for 2 to 6 days. Similar results were obtained with cells freshly explanted from human brain tumors. The results indicate that it may be possible to use fresh, explanted tumor tissue to identify patients who might benefit from therapy with beta-interferon.  相似文献   
7.
8.
To check the efficacy of potassium in alleviating oxidative stress under salt stress, salt-tolerant (Indent-1) and salt-sensitive (Red Ball) tomato (Lycopersicon esculentum Mill.) genotypes were exposed to three levels of sodium chloride (NaCl) (0, 75, 150 mM) and two levels of potassium (4.5 and 9 mM) in solution and foliar form. Thirty days of treatments revealed that increasing NaCl stress increased lipid peroxidation (malondialdehyde, MDA) and correspondingly the activity of antioxidant enzymes (superoxide dismutase, SOD; catalase, CAT; and glutathione reductase GR) in both genotypes. However, higher potassium (K) level in solution or foliar spray during the salt-induced stress decreased MDA and antioxidant activity and increased the growth in salt-tolerant genotype than in the salt-sensitive genotype. Decrease in MDA concentration, activity of antioxidant enzymes, and increase in the growth of tomato plants by the application of potassium under salt stress suggest that potassium is an effective ameliorating agent against salt-induced oxidative damage.  相似文献   
9.
Drought is an important yield-reducing factor for corn and soya bean which are the two major crops in the Delaware, Maryland and Virginia (Delmarva) region of the United States. Cowpea (Vigna unguiculata L. Walp.) is primarily grown in drier regions of the world where it is one of the most drought-resistant food legumes. Field experiments were conducted in which 10 genetically diverse cowpea genotypes were evaluated for adaptability to the Delmarva area. The cowpea genotypes were grown in rain-out shelters under non-water-stressed and water-stressed conditions. The results showed that under non-water-stressed conditions cowpea genotypes California Blackeye 5, Champion and Mississippi Silver gave higher seed yields, while genotypes White Acre, Six Week Browneye and Texas Cream 8 provided lower seed yields. Genotypes California Blackeye 5 and Champion gave comparatively better seed yields under water-stressed conditions. California Blackeye 5 was the highest seed-yielding genotype under both water-stressed and non-water-stressed conditions. The highest biological yield under non-water-stressed conditions was given by genotypes Two Crop Brown, White Acre and Elite, whereas under the water-stressed condition genotypes Texas Cream 8, California Blackeye 5, and Mississippi Silver gave higher biological yield. Genotypes Quickpick Pinkeye and Elite were identified as early maturing genotypes. The harvest index (HI) varied significantly among genotypes, with Texas Cream 8 having the lowest HI. Cowpea genotypes which gave higher seed yield under water-stressed conditions could play an important role in sustaining crop production in the Delmarva region.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号