首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   178篇
  免费   19篇
林业   8篇
农学   23篇
基础科学   8篇
  47篇
综合类   15篇
农作物   24篇
水产渔业   11篇
畜牧兽医   37篇
园艺   4篇
植物保护   20篇
  2024年   1篇
  2023年   1篇
  2022年   8篇
  2021年   13篇
  2020年   11篇
  2019年   12篇
  2018年   16篇
  2017年   18篇
  2016年   10篇
  2015年   9篇
  2014年   4篇
  2013年   21篇
  2012年   11篇
  2011年   11篇
  2010年   8篇
  2009年   4篇
  2008年   9篇
  2007年   6篇
  2006年   3篇
  2004年   1篇
  2003年   3篇
  2001年   1篇
  2000年   2篇
  1999年   4篇
  1996年   1篇
  1993年   1篇
  1991年   1篇
  1989年   1篇
  1984年   2篇
  1982年   1篇
  1972年   2篇
  1942年   1篇
排序方式: 共有197条查询结果,搜索用时 437 毫秒
1.
Terminal drought is threatening the wheat productivity worldwide, which is consumed as a staple food by millions across the globe. This study was conducted to examine the influence of foliage‐applied stress signalling molecules hydrogen peroxide (H2O2; 50, 100, 150 μm ) and nitric oxide donor sodium nitroprusside (SNP; 50, 100, 150 μm ) on resistance against terminal drought in two bread wheat cultivars Mairaj‐2008 and BARS‐2009. These stress signalling molecules were applied at anthesis stage (BBCH 61); drought was then imposed by maintaining pots at 35% water holding capacity. Terminal drought caused significant reduction in grain yield of both tested bread wheat cultivars; however, foliage application of both stress signalling molecules at either concentration improved the performance of both bread wheat cultivars. Maximum improvement in 100‐grain weight (12.2%), grains per spike (19.7%), water‐use efficiency (WUE; 19.8%), chlorophyll content index (10.7%), total soluble phenolics (21.6%) and free leaf proline (34.3%), and highest reduction in leaf malondialdehyde contents (20.4%) was recorded when H2O2 was foliage‐applied at 100 μm . Foliage application of SNP enhanced the grains per spike, 100‐grain weight and grain yield by 14.9%, 11.3% and 20.1%, respectively, than control. The foliage‐applied stress signalling molecules improved the accumulation of soluble phenolics, proline and glycine betaine with simultaneous reduction in malondialdehyde contents, which enabled wheat plants to sustain the biological membranes under stress resulting in better stay green (high chlorophyll contents) under drought. This helped improving the grain number, grain weight, grain yield, WUE and transpiration efficiency. In crux, foliage‐applied H2O2 and SNP, at pre‐optimized rate, may be opted to lessen the drought‐induced yield losses in bread wheat in climate change conditions.  相似文献   
2.
Theileria equi (T. equi) is an obligate intra- and extra-erythrocytic parasite that causes equine theileriosis (ET) in equids. Equine theileriosis is considered a notifiable disease of global significance, a major constraint to the international movement of horses, and endemic in many countries. This disease may be difficult to diagnose, as it can produce variable and nonspecific clinical signs. A cross-sectional study was designed for the molecular characterisation of T. equi and to investigate the associated risk factors of ET accompanied by its consequences on haematological and sero-biochemical parameters. A convenience sampling of 500 blood samples were collected from ET suspect horses from January to December 2017. PCR was performed on all blood samples targeting the 18S rRNA gene of T. equi followed by sequencing; 9% animals tested positive with confirmed sequences. The isolates of this study showed high homology with Cuban, Russian and Brazilian isolates of T. equi (accession numbers KY111762.2 , MG551915.1 and KY952237.1 , respectively). Based on multivariate analysis, the principal risk factors consisted of absence of dogs on the premises and presence of tick infestation. The haemato-biochemical parameters showed a decrease in granulocytes and erythrocytes, and an increase in lymphocytes, monocytes, mean corpuscular volume, mean corpuscular haemoglobin, mean platelet volume, glucose, phosphorus and aspartate aminotransferase in positive horses. This is the first study which identified ET in Punjab (Pakistan) using molecular techniques and risk factors together with the haemato-biochemical variations in horses.  相似文献   
3.
Escherichia coli (E. coli) strains were collected from young diarrheic calves in farms and field. Strains that expressed the K99 (F5) antigen were identified by agglutination tests using reference antibodies to K99 antigen and electron microscopy. The K99 antigen from a selected field strain (SAR-14) was heat-extracted and fractionated on a Sepharose CL-4B column. Further purification was carried out by sodium deoxycholate treatment and/or ion-exchange chromatography. Monoclonal antibodies to purified K99 antigen were produced by the hybridoma technique, and a specific clone, NEK99-5.6.12, was selected for propagation in tissue culture. The antibodies, thus obtained, were affinity-purified, characterized and coated onto Giemsa-stained Cowan-I strain of Staphylococcus aureus (S. aureus). The antibody-coated S. aureus were used in a co-agglutination test to detect K99+ E. coli isolated from feces of diarrheic calves. The specificity of the test was validated against reference monoclonal antibodies used in co-agglutination tests, as well as in ELISA. Specificity of the monoclonal antibodies was also tested against various Gram negative bacteria. The developed antibodies specifically detected purified K99 antigen in immunoblots, as well as K99+ E. coli in ELISA and co-agglutination tests. The co-agglutination test was specific and convenient for large-scale screening of K99+ E. coli isolates.  相似文献   
4.
Unidentified heats contribute to declining fertility rates in English dairy herds. Several techniques have been advocated to improve heat detection rates. Despite demonstrable technical efficacy and cost-effectiveness, uptake is low. A study in South West England used the Theory of Reasoned Action (TORA) to explore dairy farmers' attitudes and beliefs towards heat detection techniques. Few farmers were convinced that following prescribed observation times, milk progesterone testing and using pedometers would fit their system or improve on their current heat detection practices. Perceived difficulty of using a technique was not a constraint on adoption. Without promotion that addresses identified barriers and drivers to adoption, little change in current practice can be expected.  相似文献   
5.
Plant growth and development is hampered by various environmental stresses including chilling. We investigated the possibility of improving chilling tolerance in hybrid maize by glycinebetaine (GB) seed treatments. Maize hybrid (Hycorn 8288) seeds were soaked in 50, 100 and 150 mg l?1 (p.p.m.) aerated solution of GB for 24 h and were dried back. Treated and untreated seeds were sown at 27 °C (optimal temperature) and at 15 °C (chilling stress) under controlled conditions. Germination and seedling growth was significantly hindered under chilling stress. Moreover, chilling stress significantly reduced the starch metabolism and relative water contents (RWC), and increased the membrane electrolyte leakage. However, activities of antioxidants (catalase, superoxide dismutase and ascorbate peroxidase) were increased under stress conditions. Seed treatments with GB improved the germination rate, root and shoot length, seedling fresh and dry weights, leaf and root scores, RWC, soluble sugars, α‐amylase activity and antioxidants significantly compared with untreated seeds under optimal and stress conditions. Induction of chilling tolerance was attributed to maintenance of high tissue water contents, reduced membrane electrolyte leakage, and higher antioxidant activities and carbohydrate metabolism. Seed treatment with 100 mg l?1 GB was the best treatment for improving the performance of hybrid maize under normal and stress conditions compared with control and other levels used.  相似文献   
6.
In this research, the mineral and organic composition of the seminal plasma, physical spermatological parameters and their physiological relationships were investigated in grass carp (Ctenopharyngodon idella). The seminal plasma contained 98.14±5.23 mM L?1 (Na+), 380.85±25.95 mM L?1 (K+), 30.25±4.96 mg dL?1 (Ca2+), 19.16±1.70 mEq L?1 (Mg2+), 1.36±0.11 mg dL?1 glucose, 0.37±0.08 g dL?1 total protein, 12.02±1.18 mg dL?1 cholesterol, 14.85±1.50 mg dL?1 triglyceride and 43.5±9.56 mg dL?1 urea. The following spermatological parameters were found: sperm volume 14.44±1.16 mL, sperm motility 80.60±1.55%, movement duration 67.68±4.32 s, density 15.43±0.72 × 109 mL?1, total density 337.43+45.86 × 109 and pH 7.24±0.17. The Na+ and Ca2+ ions correlated negatively with spermatozoa motility (r=?0.453, P>0.05 and r=?0.192, P>0.05) respectively. The K+ ion correlated positively with spermatozoa motility (r=0.545, P>0.05). But a statistically significant correlation was not observed between sperm motility and seminal plasma parameters. The following correlations were observed between mineral and organic components. The Mg2+ was positively correlated with glucose and cholesterol (r=0.692, P<0.05 and r=0.680, P<0.05) respectively. A highly significant positive relationship was also found between Mg2+ and total protein (r=0.837, P<0.01). On the other hand, a significantly negative relationship was found between Ca2+ and triglyceride (r=?0.639, P<0.05). These parameters should be considered when developing procedures for either artificial fertilization or for cryopreservation of grass carp sperm.  相似文献   
7.
Plants exposed to one stress factor may become more tolerant to another. Cold is the most often documented factor inducing plant resistance to pathogens. The aim of this work was to investigate whether resistance of spring barley and meadow fescue to Bipolaris sorokiniana and resistance of winter oilseed rape to Phoma lingam induced at 5 °C for 2, 4 or 6 weeks are associated with frost tolerance, water potential and soluble carbohydrate content. Cold‐acclimated plants of each species showed increased resistance to the studied pathogens. Barley, fescue and rape plants demonstrated higher frost tolerance after hardening, but only in the case of fescue a correlation between resistance to frost and resistance to B. sorokiniana was found. A significant decrease in the water potential of leaf cells was observed in cold‐acclimated barley and fescue. In these two species, water potential greatly affected resistance to B. sorokiniana. However, only in barley did accumulation of fructose, glucose and sucrose correlate as well with changes in water potential as with cold‐induced resistance to the pathogen. In the case of hardened rape, no correlation between the studied parameters was found. The results obtained indicated that the temperature of 5 °C used during cold acclimation was not favourable for hardening of this plant species.  相似文献   
8.
The impact of soil (1, 2 kg ha?1) and foliar (100, 200 mg L?1) boron (B) with control (no B) was evaluated on phenology and yield formation of Camelina each applied at stem elongation and flowering stages. Foliar (200 mg L?1) or soil B (2 kg ha?1) resulted in earlier flowering and maturity, increased fruit bearing branches (19.68%), number of siliqua, seeds per siliqua (4.6%), biological yield (15%), seed yield (24%), harvest index (11.4%) and oil contents (23%) than no B. Increased fruit bearing branches, seed filled siliqua or seed numbers, harvest index and oil quality can be attributed to changes in dry matter accumulated of stem with simultaneous increase in siliqua dry weight with foliar or soil applied B. In crux, foliar (200 mg L?1) or soil applied (2 kg ha?1) B seems promising to improve seed and oil yield, harvest index of Camelina sativa under B deficient condition.  相似文献   
9.
BACKGROUND: Rhizobacteria have a good potential to suppress soilborne diseases, but their efficacy against sugarcane pests is rarely reported. Bacterial strains isolated from the rhizosphere of sugarcane were evaluated for their potential to suppress red rot disease on two susceptible varieties, Co‐1148 and SPF‐234, under field conditions. The strains were also characterised for the production of secondary metabolites associated with their antagonistic activity. RESULTS: One out of four strains, the Pseudomonas putida strain NH‐50 (EU627168), reduced disease severity by 44–60% in different field trials. This potent antagonistic strain produced pyoluteorin antibiotic, as confirmed by high‐performance liquid chromatography (HPLC). The PltB gene involved in pyoluteorin synthesis was amplified from the P. putida strain NH‐50 and sequenced. The extracellular metabolites and volatile and diffusible antibiotics secreted by the tested strains inhibited mycelial growth of Glomerella tucumensis (Speg.) Arx & E Mull in vitro by 7–55%. CONCLUSION: The pyoluteorin‐producing bacteria P. putida strain NH‐50 significantly reduced disease severity on both sugarcane varieties, irrespective of fungal inoculation, i.e. either inoculated through stem or through soil. This strain also possesses other plant growth characteristics and can be used as a biopesticide for sugarcane crop. Copyright © 2011 Society of Chemical Industry  相似文献   
10.
Summary The competitive ability of inoculated and indigenous Rhizobium/Bradyrhizobium spp. to nodulate and fix N2 in grain legumes (Glycine max, Vigna unguiculata, Phaseolus vulgaris) and fodder legumes (Vicia sativa, Medicago sativa, and Trifolium subterraneum) was studied in pots with two local soils collected from two different fields on the basis of cropping history. The native population was estimated by a most-probable-number plant infectivity test in growth pouches and culture tubes. The indigenous rhizobial/bradyrhizobial population ranged from 3 to 2×104 and 0 to 4.4×103 cells g-1 in the two soils (the first with, the second without a history of legume cropping). Inoculated G. max, P. vulgaris, and T. subterraneum plants had significantly more nodules with a greater nodule mass than uninoculated plants, but N2 fixation was increased only in G. max and P. vulgaris. A significant response to inoculation was observed in the grain legume P. vulgaris in the soil not previously used to grow legumes, even in the presence of higher indigenous population (>103 cells g-1 soil of Rhizobium leguminosarum bv phaseoli). No difference in yield was observed with the fodder legumes in response to inoculation, even with the indigenous Rhizobium sp. as low as <14 cells g-1 soil and although the number and weight of nodules were significantly increased by the inoculation in T. subterraneum. Overall recovery of the inoculated strains was 38–100%, as determined by a fluorescent antibody technique. In general, the inoculation increased N2 fixation only in 3 out of 12 legume species-soil combinations in the presence of an indigenous population of rhizobial/bradyrhizobial strains.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号