首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61篇
  免费   6篇
林业   1篇
农学   3篇
基础科学   3篇
  24篇
综合类   7篇
农作物   9篇
畜牧兽医   13篇
植物保护   7篇
  2023年   1篇
  2022年   4篇
  2021年   3篇
  2020年   3篇
  2019年   5篇
  2018年   4篇
  2017年   4篇
  2016年   4篇
  2015年   2篇
  2014年   3篇
  2013年   7篇
  2012年   2篇
  2011年   6篇
  2010年   1篇
  2009年   3篇
  2008年   3篇
  2007年   4篇
  2006年   2篇
  2003年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1991年   1篇
  1989年   1篇
排序方式: 共有67条查询结果,搜索用时 31 毫秒
1.
Association mapping was conducted to explore favorable alleles of the chlorophyll-related non-yellow coloring 1 (NYC1) gene under light and dark using an association panel of 146 maize inbred lines. A total of 14 polymorphic sites were identified to be significantly associated with at least one of the chlorophyll-related traits at the seedling stage. Four single nucleotide polymorphisms (SNPs) (S320, S2951, S3901, and S3355) from the NYC1 gene were respectively strongly associated with chlorophyll b (chlb), the ratio of chlorophyll a to chlorophyll b (chl_ratio), chlorophyll a degradation (chla_deg), and total chlorophyll degradation (total_chl_deg). SNPs S320 (C/A) in exon 1, and S2951 (A/G) in intron 8 was related to chlb, with 6.01 and 8.89% of phenotypic variation under light treatment, respectively. Under dark treatment, SNP S3901 (C/T), located in 3′ untranslated region (3′UTR), was associated with chl_ratio, explaining 7.01% of the observed phenotypic variation, whereas SNP S3355 (C/G) in intron 9 explained 6.48 and 5.18% of phenotypic variations in chla_deg and total_chl_deg, respectively. Taken together, these results indicated that the NYC1 gene plays an important role in chlorophyll content and other related traits, and different sites act on chlorophyll metabolism under different light intensities in maize seedlings. Furthermore, these findings improve our understanding of the genetic basis of chlorophyll metabolism under different light conditions.  相似文献   
2.
The impact of soil (1, 2 kg ha?1) and foliar (100, 200 mg L?1) boron (B) with control (no B) was evaluated on phenology and yield formation of Camelina each applied at stem elongation and flowering stages. Foliar (200 mg L?1) or soil B (2 kg ha?1) resulted in earlier flowering and maturity, increased fruit bearing branches (19.68%), number of siliqua, seeds per siliqua (4.6%), biological yield (15%), seed yield (24%), harvest index (11.4%) and oil contents (23%) than no B. Increased fruit bearing branches, seed filled siliqua or seed numbers, harvest index and oil quality can be attributed to changes in dry matter accumulated of stem with simultaneous increase in siliqua dry weight with foliar or soil applied B. In crux, foliar (200 mg L?1) or soil applied (2 kg ha?1) B seems promising to improve seed and oil yield, harvest index of Camelina sativa under B deficient condition.  相似文献   
3.
BACKGROUND: Rhizobacteria have a good potential to suppress soilborne diseases, but their efficacy against sugarcane pests is rarely reported. Bacterial strains isolated from the rhizosphere of sugarcane were evaluated for their potential to suppress red rot disease on two susceptible varieties, Co‐1148 and SPF‐234, under field conditions. The strains were also characterised for the production of secondary metabolites associated with their antagonistic activity. RESULTS: One out of four strains, the Pseudomonas putida strain NH‐50 (EU627168), reduced disease severity by 44–60% in different field trials. This potent antagonistic strain produced pyoluteorin antibiotic, as confirmed by high‐performance liquid chromatography (HPLC). The PltB gene involved in pyoluteorin synthesis was amplified from the P. putida strain NH‐50 and sequenced. The extracellular metabolites and volatile and diffusible antibiotics secreted by the tested strains inhibited mycelial growth of Glomerella tucumensis (Speg.) Arx & E Mull in vitro by 7–55%. CONCLUSION: The pyoluteorin‐producing bacteria P. putida strain NH‐50 significantly reduced disease severity on both sugarcane varieties, irrespective of fungal inoculation, i.e. either inoculated through stem or through soil. This strain also possesses other plant growth characteristics and can be used as a biopesticide for sugarcane crop. Copyright © 2011 Society of Chemical Industry  相似文献   
4.
Summary The competitive ability of inoculated and indigenous Rhizobium/Bradyrhizobium spp. to nodulate and fix N2 in grain legumes (Glycine max, Vigna unguiculata, Phaseolus vulgaris) and fodder legumes (Vicia sativa, Medicago sativa, and Trifolium subterraneum) was studied in pots with two local soils collected from two different fields on the basis of cropping history. The native population was estimated by a most-probable-number plant infectivity test in growth pouches and culture tubes. The indigenous rhizobial/bradyrhizobial population ranged from 3 to 2×104 and 0 to 4.4×103 cells g-1 in the two soils (the first with, the second without a history of legume cropping). Inoculated G. max, P. vulgaris, and T. subterraneum plants had significantly more nodules with a greater nodule mass than uninoculated plants, but N2 fixation was increased only in G. max and P. vulgaris. A significant response to inoculation was observed in the grain legume P. vulgaris in the soil not previously used to grow legumes, even in the presence of higher indigenous population (>103 cells g-1 soil of Rhizobium leguminosarum bv phaseoli). No difference in yield was observed with the fodder legumes in response to inoculation, even with the indigenous Rhizobium sp. as low as <14 cells g-1 soil and although the number and weight of nodules were significantly increased by the inoculation in T. subterraneum. Overall recovery of the inoculated strains was 38–100%, as determined by a fluorescent antibody technique. In general, the inoculation increased N2 fixation only in 3 out of 12 legume species-soil combinations in the presence of an indigenous population of rhizobial/bradyrhizobial strains.  相似文献   
5.
Bread-making quality of wheat flour is largely determined by the accumulation, concentration and composition of the proteins in the grain, which are influenced by genetic (G) and environment (E) variation and their interactions. We have therefore evaluated the importance of G and E factors and their interactions in determining the accumulation and composition of the proteins in the wheat grain. The cultivar determined development time (CDDT), together with the amount and timing of N application, played a significant role in determining the accumulation and final composition of the wheat grain proteins, explaining 21–59% of the variation. At low temperature, N application both at spike formation and at anthesis explained the highest proportion of variation (36%) in the percentage of sodium dodecyl sulphate (SDS) unextractable polymers in the total amount of polymers (% UPP), while at high temperature CDDT contributed most to the variation in % UPP (20%). The largest contributor to variation in the amount of total SDS extractable proteins (TOTE) was N application at anthesis, both at low and high temperatures (12% and 36%, respectively). Thus, the climate should be considered in recommendations for improving the protein quality and thereby the bread-making quality of wheat.  相似文献   
6.
Quinoa is recently introduced to Pakistan as a salt‐tolerant crop of high nutritional value. Open field trials were conducted to evaluate its performance on normal and salinity/sodicity‐degraded lands at two locations of different salinity/sodicity levels, S1 (UAF Farm, Normal Soil), S2 (Paroka Farm UAF, saline sodic), S3 (SSRI Farm, normal) and S4 (SSRI Farm, saline sodic) during 2013–2014. Two genotypes (Q‐2 and Q‐7) were grown in lines and were allowed to grow till maturity under RCBD split‐plot arrangement. Maximum seed yield (3,062 kg/ha) was achieved by Q‐7 at normal field (S1) soil which was statistically similar with yield of same genotype obtained from salt‐affected field S2 (2,870 kg/ha). Furthermore, low yield was seen from both genotypes from both S3 and S4 as compared to S1 and S2. Q‐7 was best under all four conditions. Minimum yield was recorded from Q‐2 (1,587 kg/ha) at S4. Q‐7 had higher SOD, proline, phenolic and K+ contents, and lower Na+ content in leaves as compared to Q‐2. High levels of antioxidants and K+/Na+ of Q‐7 helped to withstand salt stress and might be the cause of higher yields under both normal and salt‐affected soils. Seed quality (mineral and protein) did not decrease considerably under salt‐affected soils even improved seed K+, Mg2+ and Mn2+.  相似文献   
7.
Zinc (Zn) is an important micronutrient for rice (Oryza sativa L.) production and its deficiency has been observed in various production systems. High grain Zn concentration is equally important for high rice yield and human health. In this work, the effects of Zn fertilization on seedling growth, grain yield, grain Zn concentration, and their association with root traits were studied under alternate wetting and drying (AWD), aerobic rice (AR), system of rice intensification (SRI), and continuous flooding (CF). Zinc fertilization (15 kg ha?1) improved nursery seedlings chlorophyll and Zn concentrations, root length, and number of roots with highest values observed in CF. At harvesting, maximum plant height, panicle length, total and panicle bearing tillers, and kernel yield were found with Zn addition in AWD and CF rice systems. Mid season drainage provided at maximum tillering and Zn fertilization increased its concentration in leaves, culms, panicles, and grains under CF and AR at physiological maturity. Most of Zn applied was allocated into culms and panicles, nevertheless, a significant increase in grain Zn concentration was also observed in all production systems. Association of leaf Zn with grain Zn concentration was stronger than with culm and panicle Zn. The results indicate that Zn application after rice nursery transplanting is more important for grain Zn enrichment in all rice systems than for increase in grain yield in all systems except AWD where grain yield was also increased. More grain yield in CF and AWD as compared to SRI and AR can also be attributed to decreased spikelet sterility and to better Zn phyto‐availability in these rice systems at physiological maturity.  相似文献   
8.
In recent decades, ambient gaseous pollution has increased due to anthropogenic activities worldwide. The studies to evaluate the adverse effects of ambient pollutants on commonly grown food crops are still limited, especially in Asian countries like Pakistan. The present study was conducted to measure the ambient pollutants in different sites of Faisalabad and their impact on growth and yield of wheat, mung bean and peas. Plants were grown in pots and placed at three sites named as control (Wire house of Government College University, Faisalabad), low pollution (LP) (Farm Area of Ayub Agricultural Research Institute) and high pollution (HP) (GT Chowk, Faisalabad) sites. Results showed that ambient ozone (O3) concentration was highest at HP site followed by LP site and was below AOT40 in control site. Ambient pollutants caused foliar injury in crops and decreased plant height, leaf area, biomass and grain yield. Pollutants caused a reduction in photosynthetic pigments, stomatal conductance and net photosynthetic rate and grain protein contents in all three crops. In conclusion, the ambient O3 level was highest at HP site, this current O3 level and other pollutants decreased the growth and yield of important food crops.  相似文献   
9.
An understanding of variation in fruit quality in relation to tree age can help understand the issue of poor fruit quality in young orchards; however, limited information is available on the citrus fruit. In this study, the endogenous nutritional status in rind, rag, and leaves; pectin status in rind and rag; and anatomical fruit growth parameter in rind tissues were studied in ‘Kinnow’ mandarins fruit during their development on trees from three age (6-, 18-, and 35-year-old) groups. In older (35-year-old) trees, rind, rag, and leaf nitrogen (N), phosphorus (P), and potassium (K) concentrations were superior. In fruit from all tree age groups, total pectin and protopectin reduced; however water-soluble pectin (WSP) improved. In rind tissues harvested from young (6-year-old) trees, cell density was more while cell size was less. In all tree age groups, cell density in rind tissues correlated negatively with rind WSP.  相似文献   
10.
1. The present study investigated the effects of encapsulated benzoic acid (BA) supplementation in broiler feed on performance and gastrointestinal microbiota.

2. Eighty broilers were randomly divided into two groups. Birds in the control group were fed on maize–soybean-based diets. Birds in the treatment group were provided the same diet supplemented with 2 g/kg BA encapsulated in a vegetable oil matrix.

3. At the end of the trial (d 35), pH, bacterial composition and metabolites were determined in the crop, jejunum, ileum and caecum.

4. Growth performance variables and pH were not significantly different.

5. BA concentration decreased rapidly in the proximal gut. However, the treatment diet showed higher BA in the crop, jejunum, ileum and caecum.

6. Total lactate in the crop and D-lactate in the jejunum was higher in the BA treated group. Caecal total and branched chain fatty acids were decreased due to the treatment.

7. Lactobacilli populations were significantly altered by BA supplementation. A trend for increased lactobacilli was observed in the crop, while it became significant in the jejunum and ileum. Lactobacillus species responded differently to the treatment. Four of 5 measured Lactobacillus species, particularly in the ileum, followed the course observed for total lactobacilli; only Lactobacillus salivarius was not modified.

8. Correlation analysis showed that BA modified the intestinal microbiota. Lactobacilli correlated negatively to all studied clostridial clusters and enterobacteria. Clostridial clusters IV and XIVa were significantly increased in the jejunum, whereas only clostridial cluster XIVa was increased in the caecum.

9. Encapsulated BA modified the intestinal microbiota which can lead to the conclusion, that the main beneficial mode of action of BA in the gut appears to be the enhancement of lactic acid bacteria, which in turn may act as a vanguard against pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号