首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
农学   2篇
  1篇
综合类   1篇
  2018年   1篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Jerusalem artichoke is a diversely-utilized crop. Selection for high yield, inulin content and other economically important traits are useful for improving this crop. The objectives of the present study were to evaluate genetic variability for qualitative and quantitative traits among Jerusalem artichoke accessions and to identify different groups of accessions using morphological and agronomic traits. Seventy-nine accessions were evaluated in a randomized complete block design with two replications in the late rainy season 2008, the early rainy season 2009 and the late rainy season 2009 at Khon Kaen University agronomy farm, Thailand. Morphological and agronomic characteristics were evaluated for genetic variations. High variations were found among Jerusalem artichoke accessions for qualitative and quantitative characters, and selection for these characters is possible. High variations were observed for tuber width, number of tubers/plant, biomass, fresh tuber yield and tuber size. Correlation coefficient between fresh tuber yield and tuber size was positive and significant (0.58, P ≤ 0.01). Improvement of tuber size is a means to improve yield and tuber quality. Based on morphological and agronomic characteristics, Jerusalem artichoke accessions were clustered into four distinct groups (R2 = 0.88). These groups may be used as parental material to generate progenies for further improvement of this crop. This information will enable breeders to make informed decisions about possible heterotic groups for their breeding programs and germplasm conservation.  相似文献   
2.
3.
Pearl millet (Pennisetum glaucum) is the most important cereal in crop-livestock production systems in arid and drier semi-arid environments valued for its grain and dry stover. The conventional approach of improving grain yield through greater partitioning of biomass to the grain and decreased stover yield is not a viable strategy for arid regions where biomass also needs to be improved. The current research tested the hypothesis whether biomass can be improved without extending the crop duration. The 232 F5 lines derived from a cross (J28 × RIB 335/18) were evaluated in their testcross form along with three commercial hybrids under arid zone conditions. Biomass, grain and stover yields, panicle number, grain size and grain number panicle−1 varied 1.8 to 2.7 fold in progeny testcrosses. Variation in duration of flowering time accounted for only 2% of variation in biomass, indicating that considerable scope existed for selection of testcrosses, and by implication, of F5 progenies with high biomass independent of crop duration. Stover yield accounted for 72% of differences in total biomass with remaining accounted for by grain yield. From among 92 and 132 testcrosses that had flowering time comparable to two early checks, most had significantly higher biomass, grain and stover yields than these early checks but none of the testcrosses had earliness on par with extra-early maturing hybrid HHB 67. Mean superiority of best 5% testcrosses over early checks was 58% for biomass, 68% for stover yield and 53% for grain yield. The results indicated that there are good prospects of improving biomass in arid zone pearl millet without significantly compromising crop duration.  相似文献   
4.
The planting of upland rice is one cropping option in area with limited water availability and low soil fertility in North and Northeast Thailand.The varietal selection was determined by grain yield potential,wide adaptation,and good stability.This study was aimed at evaluation of indigenous upland rice germplasm for yield and yield stability in multi-locations.Thirty-six upland rice genotypes collected from six provinces of the North and Northeast Thailand and one check variety(Sewmaejan) were assessed under five locations in the rainy seasons of 2009 and 2010.The experiment was laid out in a randomized complete block design with three replications.The genotype grain yield was highly affected by location(59.90%),followed by genotypes(G)×location(L) interaction(12.80%) and genotype(6.79%).The most suitable location for the genotype evaluation was L3(Khon Kaen-KKU10) which associated with stability of grain yield for all genotypes.Furthermore,biplot and regression analysis indicated that genotype numbers 6(Jaowmong 1),10(Neawmong 1),18(Neawdum 1),19(Leamna),20(Prayaleamkang),32(Kunwang 2),and 33(Kunwang 3) showed great yield stability over five locations.The genotypes will be applicant for upland rice production area and parental base in breeding program.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号