首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
农学   2篇
  2篇
农作物   3篇
  2020年   1篇
  2019年   2篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2007年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Estimation of yield reduction in crop caused by the salinity stress is mostly based on variations of soil electrical conductivity and the severity of water stress. Crop response curves to salinity were developed without considering ion toxicity and nutritional imbalance in the plant. The objective of this study was to explore the possibility of using the ratio of the concentration of potassium by sodium in rice leaf (leaf-K/Na) to predict yield under the salinity stress. The rice (Oryza sativa L.) yield under fresh and saline condition and the leaf-K/Na related database was created. Data were collected from consecutive three seasons of a field experiment in the Africa Rice Center experimental farm in Senegal (16° 11? N, 16° 15?W). We studied the relationship between the relative yield (Yr), a ratio of yield under the salinity stress to the potential yield and the leaf-K/Na (x). Furthermore, we did regression analyses and F-test to determine the best fitting function. Results indicate that the exponential function [i.e. Yr = 100 exp (-b x)] was the best fitting model with the lowest root mean square error (9.683) and the highest R2 value (0.90). Example applications on independent data from published papers showed relatively good predictions, suggesting that the model can be used to predict rice yield in saline soils.  相似文献   
2.
Rice is the main crop produced in the Senegal River Valley under the semiarid Sahelian climate where water resource management is critical for the resource use sustainability. However, very limited data exit on rice water use and irrigation water requirement in this water scarcity environment under climate change conditions. Understanding crop water requirements is essential for better irrigation practices, scheduling and efficient use of water. The objectives of this study were to estimate crop water use and irrigation water requirement of rice in the Senegal River Valley at Fanaye. Field experiments were conducted during the 2013 hot and dry season and wet season, and 2014 hot and dry season and wet seasons. Three nitrogen fertilizer treatments were applied to rice variety Sahel 108: 60, 120, and 180 kg N ha?1. Rice water use was estimated by the two-step approach. Results indicated that crop actual evapotranspiration (ETa) varied from 632 to 929 mm with the highest ETa obtained during the hot and dry seasons. Irrigation water requirement varied from 863 to 1198 mm per season. Rice grain yield was function of the growing season and varied from 4.1 to 10.7 tons ha?1 and increased with nitrogen fertilizer rate. Rice water use efficiency relative to ETa and irrigation requirements increased with nitrogen fertilizer rate while rice nitrogen use efficiency decreased with the nitrogen fertilizer rates. The results of this study can be used as a guideline for rice water use and irrigation water requirement for the irrigation design projects, consultants, universities, producers, and other operators within rice value chain in the Senegal River Valley.  相似文献   
3.
Salinity is a major constraint affecting rice productivity in rainfed and irrigated agro-ecosystems. Understanding salinity effects on rice production at the reproductive stage could improve adaptation for this trait. Identifying quantitative trait loci (QTLs) controlling adaptation to salinity may also accelerate breeding rice germplasm for environments prone to this stress. We used the salt tolerant landrace ‘Hasawi’ as a donor parent to generate three F2 offspring (consisting each of 500 individuals) with three African cultivars (‘NERICA-L-19’, ‘Sahel 108’ and ‘BG90-2’) used as recipient parents (RP). The F2s and F2:3s were evaluated for grain yield and other traits in saline fields. Salinity caused reduction in all measured traits across the F2-derived offspring, e.g. grain yield reduced between 65 and 73 %, but some offspring had twice the RP’s grain yield. QTL analysis revealed 75 QTLs for different traits in all 3 genetic backgrounds (GBs): 24 of them were common among all the 3 GBs while 31 were noted in 2 GBs, and 17 in one GB. ‘Hasawi’ contributed on average 49 % alleles to these QTLs. Two yield and yield related QTLs (qGY11 and qTN11) common in all 3 GBs were mapped on the same chromosomal segment suggesting these QTLs might be stable across different GBs. Four other QTLs were strongly associated with salinity tolerance with peak marker RM419, representing a potential candidate for MAS due to high LOD score and relatively large effect QTLs.  相似文献   
4.
Growing rice in saline soils by minimizing damage on growth and yield remains a challenge. We conducted field experiments in the Africa Rice research field located in the Senegal River delta (16° 11? N, 16° 15? W) to study the effects of three management options of fertilization e.g. (i) nitrogen, phosphorus, and potassium fertilization: NPK; (ii) NPK combined with zinc: NPK-Zn, and (iii) NPK combined with gypsum: NPK-gypsum on the soil salinity level, the nutrient uptake and the productivity of different rice cultivars. The whole objective of this study is to determine how zinc or gypsum associated to NPK fertilizer can improve the growth and productivity of rice crop in saline soil. Results showed that the initial soil salinity level was reduced rapidly in plots treated with gypsum. The leaf-K/Na ratio, agronomic nitrogen use efficiency (ANUE), and grain yield of rice cultivars under the salinity stress were improved by the NPK-gypsum and NPK-Zn options relatively to the NPK option, suggesting that NPK-gypsum and NPK-Zn are suitable management options in reducing adverse effect of low K/Na, low ANUE as well as to improve rice yield under salinity stress.  相似文献   
5.
Paddy and Water Environment - Soil salinity is a threat to crop production in the Senegal River Delta where salt intrusion increases soil electrical conductivity and most of farmers had abandoned...  相似文献   
6.
DNA markers enabled to determine the chromosomal locations of the two Rf genes(Rf3 and Rf4) in the wild-abortive cytoplasmic male sterility(WA-CMS) system. Four simple sequence repeats(SSRs) RM171, RM258, RM315 and RM443 were used to detect the allelic status with respect to the fertility restoration genes(Rf3 and Rf4) in 300 rice cultivars or breeding lines. The results revealed that out of 300 lines, 90 lines screened had Rf3, 65 lines had Rf4, and 45 lines had Rf3 and Rf4 alleles. Furthermore, 45 lines selected using SSR markers were mated with a CMS line(IR58025A) to analyze their restoring ability. Offspring of all the test lines except HHZ8-SAL9DT1-Y1, HHZ5-SAL9-Y3-1 and IDSA77 exhibited higher pollen and spikelet fertility( 80%), thus confirming they bear the Rf alleles. The hybrid offspring of ARH12-6-1-1-B-3-1, IR32307-10-3-2-1 and Sahel 329 had the highest pollen fertility(97.39%, 98.30% and 97.10%, respectively) and spikelet fertility(95.10%, 97.07% and 96.10%, respectively).  相似文献   
7.
Use of DNA-based markers can accelerate cultivar development in variable cultivation environments since, in contrast to phenotype, DNA markers are environment-independent. In an effort to elucidate the genetic basis of genotype-by-environment interaction (G × E) for yield of rice (Oryza sativa L.), the associations between 139 AFLP markers and grain yield were determined for rice grown in fresh water (EC of 0.65 dS m−1) and saline conditions (EC of 4–8 dS m−1) with 0 kg ha−1 or 100 kg ha−1 nitrogen fertilizer in the years 2000 and 2001. A population of recombinant inbred lines of rice, developed from an IR29 × Pokkali cross, was used in the study. Both genotype × salinity and genotype × nitrogen level interactions were significant, with the genotype × salinity interaction being stronger. Through multiple regression analysis using a stepwise procedure for selecting markers, 36 markers were detected for grain yield in the four test conditions and of these 28 were detected in only one test condition implying strong environmental specificity for yield QTL expression. However, the fact that eight QTLs were detected in more than one test condition points to the existence of wide-adaptability genes in this cross. Markers with significant associations with yield explained between 37% and 48% of the yield variation in each test condition. Superior genotypes of rice were identified in all four test conditions based on their marker signatures. Furthermore, across N fertilizer regimes, yield predicted from summed additive effects of QTLs were significantly correlated with observed yield in the same year and across years. Thus marker-assisted selection can help breeders overcome the problem of low selection efficiency encountered during phenotypic selection for yield in stress environments.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号