首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   1篇
  5篇
农作物   4篇
畜牧兽医   22篇
  2021年   1篇
  2018年   3篇
  2017年   1篇
  2016年   2篇
  2014年   2篇
  2013年   3篇
  2012年   3篇
  2011年   3篇
  2009年   3篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1999年   3篇
排序方式: 共有31条查询结果,搜索用时 312 毫秒
1.
In the present study, 500 steers were used to develop models for predicting the percentage of intramuscular fat (PIMF) in live beef cattle. Before slaughter, steers were scanned across the 11th and 13th ribs using Aloka 500V (AL-500) and Classic Scanner 200 (CS-200) machines. Four to five images were collected per individual steer using each machine. After slaughter, a cross-sectional slice of the longissimus muscle from the 12th rib facing was used for chemical extraction to determine actual carcass percentage of intramuscular fat (CPIMF). Texture analysis software was used by two interpreters to select a region for determination of image parameters, which included Fourier, gradient, histogram, and co-occurrence parameters. Four prediction models were developed separately for each of AL-500 and CS-200 based on images captured by the respective machines. These included models developed without transformation of CPIMF (Model I), models based on logarithmic transformation of CPIMF (Model II), ridge regression procedure (Model III), and principal component regression procedure (Model IV). Model R2 and root mean square error of AL-500 Models I, II, III, and IV were 0.72, 0.84%; 0.72, 0.85%; 0.69, 0.91%; and 0.71, 0.86%; respectively. The corresponding R2 and root mean square error values of CS-200 Models I, II, III, and IV were 0.68, 0.87%; 0.70, 0.85%; 0.64, 0.94%; and 0.65, 0.91%; respectively. Initially, AL-500 and CS-200 prediction models were validated separately on an independent data set from 71 feedlot steers. The overall mean bias, standard error of prediction, and rank correlation coefficient across the four AL-500 models were 0.42%, 0.84%, and 0.88, respectively. For the four CS-200 models, the corresponding overall mean values were 0.67%, 0.81%, and 0.91, respectively. In a second validation test, only Model II of AL-500 and CS-200 was evaluated separately based on data from 24 feedlot steers. The overall mean bias, absolute difference, and standard error of prediction of AL-500 Model II were 0.71, 0.92, and 0.98%. For CS-200 Model II, the corresponding values were 0.59, 0.97, and 1.03%. Both AL-500 and CS-200 equipment can be used to accurately predict PIMF in live cattle. Further improvement in the accuracy of prediction equations could be achieved through increasing the development data set and the variation in PIMF of cattle used.  相似文献   
2.
The objective of this study was to assess the effects of asymmetric placement of the foot on the three-dimensional motions of the interphalangeal joints. Four isolated forelimbs were used. Trihedrons, made of three axes fitted with reflective markers, were screwed into each phalanx. They allowed to establish a local frame associated with each bone and thus to define the spatial orientation of the phalanges. The limbs were then placed under a power press, and subjected to compression with gradually increasing force (from 500 to 6 000 N). The procedure was performed in neutral position and with the lateral or medial part of the foot raised by a 12 degrees wedge. Flexion, collateromotion (passive abduction/adduction) and axial rotation of the interphalangeal joints were measured using a cardan angle decomposition according to the principle of the "Joint Coordinate System" described by Grood and Suntay. Raising the lateral or medial part of the hoof induced collateromotion (about 5.6 degrees +/- 0.8) and axial rotation (about 6.5 degrees +/- 0.5) of the distal interphalangeal joint. The proximal interphalangeal joint underwent axial rotation (about 4.7 degrees +/- 0.5 at 6 000 N) and slight collateromotion. Both interphalangeal joints underwent collateromotion in the direction of the raised part of the foot (i.e., narrowing of the articular space on the side of the wedge), whereas axial rotation occurred in the direction opposite to the raised part of the foot. These results confirm the functional importance of interphalangeal joint movements outside the sagittal plane. In particular they demonstrate the involvement of the proximal interphalangeal joint in the digital balance. These data are helpful for the identification of biomechanical factors that may predispose to interphalangeal joint injury. Also the data may be of use for the rational decision making with respect to exercise management and corrective shoeing of the lame horse.  相似文献   
3.
4.
5.
Accurate and near‐real‐time estimation of herbaceous aboveground biomass (AGB) at farm level is crucial for monitoring pasture production and proactive management of stock in semiarid rangelands. Despite its importance, remote sensing has been rarely used by range ecologists and managers in Zimbabwe. This study aimed at assessing the performance of classical multispectral vegetation indices (MVIs) when either singly regressed with measured herbaceous AGB or combined with other visible spectral bands in predicting herbaceous AGB in a Colophospermum mopane savannah. Field herbaceous AGB and corresponding Landsat 8 Operational Land Imager visible spectral data were collected during the 2016–2017 rainy season. Relationships between measured AGB and classical MVIs and extended models of MVIs combined with other visible bands were analysed using bootstrapped simple and stepwise multiple linear regression functions. When MVIs were singly regressed with measured AGB, ratio‐based indices yielded the highest r2 value of 0.64, followed by soil‐adjusted indices (r2 = 0.61), while atmospherically corrected MVIs showed the lowest r2 of 0.58 (p = 0.00). A significant improvement in herbaceous AGB estimation was obtained using a combination of MVIs and other visible bands. Soil‐adjusted MVIs showed the greatest increase (44–46%) in r2, while atmospherically corrected and ratio‐based MVIs poorly improved (<5%). The findings demonstrate that combining MVIs with Landsat 8 optical bands, especially green band, provides the best models for estimating AGB in C. mopane savanna rangelands. These findings emphasize the importance of testing band‐MVI combinations when developing models for estimating herbaceous AGB.  相似文献   
6.
The chemical composition, main physicochemical properties and thermal stability of oil extracted from Acacia senegal seeds were evaluated. The oil, moisture and the ash contents of the seeds were 9.80%, 6.92% and 3.82%, respectively. Physicochemical properties of the oil were iodine value, 106.56 g/100 g of oil; saponification value, 190.23 mg KOH/g of oil; refractive index (25 °C), 1.471; unsaponifiable matter, 0.93%; acidity, 6.41% and peroxide value, 5.43 meq. O2/kg of oil. The main fatty acids in the oil were oleic acid (43.62%) followed by linoleic acid (30.66%) and palmitic acid (11.04%). The triacylglycerols (TAGs) with equivalent carbon number ECN 44 (34.90%) were dominant, followed by TAGs ECN 46 (28.19%), TAGs ECN 42 (16.48%) and TAGs ECN 48 (11.23%). The thermal stability analysed in a normal oxidizing atmosphere showed that the oil decomposition began at 268.6 °C and ended at 618.5 °C, with two stages of decomposition at 401.5 °C and 576.3 °C. According to these results, A. senegal seed oil has physicochemical properties, fatty acids composition and thermal characteristics that may become interesting for specific applications in several segments of food and non-food industries.  相似文献   
7.

Purpose

Water shortage in most countries of the southern Mediterranean basin has led to the reuse of municipal wastewater for irrigation. Despite numerous advantages for soil fertility and crop productivity, recycling wastewater in the soil also has several ecotoxicological and sanitary problems. To evaluate the chronic soil contamination and the cumulative impact of wastewater, we compared seven plot sites irrigated with treated wastewater 1, 2, 7, 9, 13, and 15 years and one nonirrigated taken as control, and these were sampled for soil analysis.

Materials and methods

Soil samples were analyzed for pH, electrical conductivity (EC), total Kjeldahl nitrogen (TKN), total organic matter, and total concentrations of Cu, Zn, Fe, Ni, Pb, and Cd. Microbial biomass and enteric bacteria (fecal coliforms and fecal streptococci) were determined in all soil samples.

Results and discussion

The soil pH values were not consistently affected. Soil salinity, measured as EC, appeared significantly high and proportional to the duration of wastewater irrigation. Also, concentrations of total Ni, Zn, Cu, Pb, and Cd increased significantly (P?≤?0.05) according to the number of irrigation years but are usually under Tunisian standards. The concentration of heavy metals (Ni, Zn, Cu, Pb, and Cd) showed a significant decrease in the soil profile. The microbial biomass carbon (MBC) is 1.5 times larger in the soil irrigated for 15 years with treated wastewater as compared to the one taken as control. The growth of microorganisms might be explained by the ready source of easily degradable compounds in the oligotrophic soil environment brought about by wastewater irrigation. Soil bacteriological analysis showed that the number of fecal coliforms (FC) and that of fecal streptococci (FS) were affected appreciably (P?≤?0.05) by the duration of wastewater application (number of years) and by the soil depth (0–20, 20–40, and 40–60 cm).

Conclusions

Treated wastewater irrigation led to changes in physicochemical and microbiological soil properties. The magnitude and specificity of these changes significantly correlated with the duration of such practice. It can be concluded, based on these results, that the proper management of wastewater irrigation and periodic monitoring of soil fertility and quality parameters are required to ensure successful, safe, and long-term reuse of wastewater irrigation.  相似文献   
8.
We used data from 144 bulls, heifers, and steers to determine the repeatability of ultrasound-predicted percentage of intramuscular fat and to study the effect of repeated measurements on the standard error of prediction. Animals were scanned at an average age of 433 d by a certified technician. Individual bulls, heifers, and steers were scanned five to six times each with two Aloka 500-V machines, and the percentage of intramuscular fat was predicted from two regions of interest within an image. Variance components and repeatability values were computed for the overall data and by machine, region of interest, and sex. Animals were broadly divided into two groups based on mean ultrasound-predicted percentage of intramuscular fat. Variance components and repeatability values were then estimated within each group. The overall repeatability of ultrasound-predicted percentage of intramuscular fat was .63 +/- .03. Differences in the repeatability values between machines and between regions of interest were not different from zero (P > .05). Bulls showed a lower within-animal SD of .82% as compared to .97 and 1.02% for steers and heifers, respectively. However, steer ultrasound-predicted percentage of intramuscular fat measures were more repeatable (P < .05) than those of bulls and heifers. The difference in repeatability between bull and heifer measures was not important (P > .05). Animals with mean ultrasound-predicted percentage of intramuscular fat less than 4.79% showed less repeatable measures (P < .05) than those with means above 4.79%. The image variance contributed to nearly 70% of the total variance of observations within an animal. Standard error of animal mean measures showed a 50% reduction when the number of images per animal increased to four. Therefore, we concluded that increasing the number of images per animal plays a more significant role in reducing the standard error of prediction than taking multiple measurements within a single image.  相似文献   
9.
Carcass and live-animal measures from 1,029 cattle were collected at the Iowa State University Rhodes and McNay research farms over a 6-yr period. Data were from bull, heifer, and steer progeny of composite, Angus, and Simmental sires mated to three composite lines of dams. The objectives of this study were to estimate genetic parameters for carcass traits, to evaluate effects of sex and breed of sire on growth models (curves), and to suggest a strategy to adjust serially measured data to a constant age end point. Estimation of genetic parameters using a three-trait mixed model showed differences between bulls and steers in estimates of h2 and genetic correlations. Heritability for carcass weight, percentage of retail product, retail product weight, fat thickness, and longissimus muscle area from bull data were .43, .04, .46, .05, and .21, respectively. The corresponding values for steer data were in order of .32, .24, .40, .42, and .07, respectively. Analysis of serially measured fat thickness, longissimus muscle area, body weight, hip height, and ultrasound percentage of intramuscular fat using a repeated measures model showed a limitation in the use of growth models based on pooled data. In further evaluation of regression parameters using a linear mixed model analysis, sex and breed of sire showed an important (P < .05) effect on intercept and slope values. Regression of serially measured traits on age within animal showed a relatively larger R2 (62 to 98%) and a smaller root mean square error (RMSE, .09 to 8.85) as compared with R2 (0 to 58%) and RMSE (.31 to 67.9) values when the same model was used on pooled data. We concluded that regression parameters from a within-animal regression of a serially measured trait on age, averaged by sex and breed, are the best choice in describing growth and adjusting data to a constant age end point.  相似文献   
10.
Data from 970 feedlot steers and bulls were used to evaluate effects of different age end points on the accuracy of prediction models for percentage of retail product, retail product weight, and hot carcass weight. Cattle were ultrasonically scanned three to five times for fat thickness, longissimus muscle area, and percentage of intramuscular fat. Live animal measures of body weight and hip height were also taken during some of the scan sessions. Before development of prediction equations, live and ultrasound data were adjusted to four age end points using individual animal regressions. Age end points represented mean age at slaughter (448 d), mean age at the second-to-last scan before slaughter (414 d), mean age at the third-to-last scan before slaughter (382 d), and an age end point of 365 d. Ultrasound and live animal measures accounted for a large proportion of the variation in the dependent variables regardless of the age end point considered. For all three traits, final models based on independent variables adjusted to earlier ages of 365 and 382 d showed better or at least similar model R2 and root mean square errors than those based on independent variables adjusted to a mean slaughter age of 448 d. Validation of the models using independent data from 282 steers resulted in a mean across-age rank correlation coefficient of .78, .88, and .83 between actual and predicted values of the percentage of retail product, hot carcass weight, and retail product weight, respectively. Mean across-age rank correlation of breeding values for the corresponding traits were .92, .89, and .82. The results of this study suggest that live and ultrasound traits measured as early as 365 d could be used to predict end product traits as accurately as similar measures made before slaughter at age 448 d.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号