首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  6篇
综合类   1篇
园艺   1篇
  2019年   5篇
  2018年   3篇
排序方式: 共有8条查询结果,搜索用时 18 毫秒
1
1.
以"南杂二号"黄瓜为试材,利用遮光网对黄瓜幼苗连续寡照1、3、5h,均处理3、6、9、12d,研究了寡照条件下黄瓜叶片的光合特性;并利用非直角双曲线模型、指数模型、直角双曲线模型和直角双曲线修正模型4种模型模拟光响应曲线,选择最优的模型来模拟光合参数,以期为设施黄瓜种植光照优化控制提供科学依据。结果表明:直角双曲线修正模型最佳,其次为指数模型,非直角双曲线模型,直角双曲线模型,并利用最优的直角双曲线修正模型的模拟值计算出光合参数;寡照下净光合速率、最大光合速率、光饱和点、表观量子效率、气孔导度均降低,蒸腾速率先升高后降低,光补偿点、气孔限制值升高,水分利用率先减少后增加,连续寡照1、3、5h净光合速率较对照分别降低了23.56%、45.40%、62.60%。  相似文献   
2.
为研究花期低温寡照对番茄植株生长及果实发育的影响,以温室番茄品种"金粉5号"为试材,开展低温寡照双因素环境控制试验,最低气温设为2、4、6℃,寡照设置光合有效幅射(PAR)200、400μmol/(m~2·s),处理持续时间:2、4、6、8、10 d。以温度18~25℃,PAR 800μmol/(m~2·s)为对照(CK),测定番茄植株和果实生长发育指标。结果表明:(1)低温寡照处理下,番茄植株的株高、茎粗和叶面积较CK生长缓慢,尤其是处理超过8 d的番茄植株生长指标的日增长量均显著低于CK。株高、茎粗、叶面积增长最缓慢的均为2℃、PAR 200μmol/(m~2·s)处理10 d,比CK分别降低了89.6%、91.8%、85.6%。当温度相同时,处理6、8、10 d的PAR为200μmol/(m~2·s)的株高、茎粗和叶面积日增长量均低于PAR 400μmol/(m~2·s)。(2)随着低温寡照胁迫时间的延长,坐果15 d后果径平均增长量都有不同程度减缓,增长速率最快的是6 d的6℃、PAR 400μmol/(m~2·s)处理,横径和纵径较CK分别降低了0.214、0.086 mm/d。(3)果实生长速率和果实体积随低温寡照胁迫程度的加深显著降低,温度2℃处理10 d的果实体积均小于其余温度处理,较CK降低了44.6%~49.5%。(4)整个低温寡照处理中,果实生长期随处理天数的延长呈先增加后减少的趋势。研究证实相同处理天数相同PAR处理植株生长和果实发育速度随温度的降低而减缓;相同处理天数相同温度的处理随PAR的降低而减缓。  相似文献   
3.
2014-2016年在江苏省不同地区选择塑料大棚和玻璃温室进行设施内气温监测,基于设施内日最高和最低气温,采用余弦分段函数、正弦分段函数、正弦-指数分段函数、一次分段函数和神经网络模型分别模拟不同季节和不同天气状况(晴天和阴雨天)下的逐时气温日变化,探究利用室内最高和最低气温模拟计算逐时气温的方法,以及设施内逐时气温日变化规律。结果表明:5种模型均可通过当日最高、最低气温模拟逐时气温变化,其中神经网络模拟精度较高(RMSE=0.69℃),并且受温室类型、天气状况和季节变化的影响较小,普适性较高;正弦-指数分段函数模拟效果最好(RMSE=0.43℃),且受天气和季节的影响较小,但其受温室本身特性和地区的影响较大;余弦分段函数(RMSE=0.85℃)和正弦分段函数(RMSE=0.78℃)模拟效果相近,且受天气和地区的影响;一次分段函数准确度较低(RMSE=0.90℃)且误差变化较大。各方法对塑料大棚内逐时气温的模拟精度均高于玻璃温室。模型模拟精度的季节变化因模型和温室类型有一定差异,但通常情况下,春季和冬季的模拟误差大于秋季,夏季误差最小。  相似文献   
4.
以番茄品种“金冠5号”为试材,在人工气候箱内进行正交试验,设计日最高气温(℃)/最低气温(℃)分别为32/22、35/25、38/28、41/31共4个温度处理水平,空气相对湿度分别为50%±5%、70%±5%、90%±5%,处理天数为3、6、9、12d,并以28/18、50%±5%为对照(CK),测定不同处理下番茄苗叶片生理指标的变化。结果表明:在32~41℃高温处理下,叶片气孔导度Gs、蒸腾速率Tr在日最高气温35℃时最高,分别为0.109μmol·m-2·s-1、0.21μmol·m-2·s-1;叶水势ψw、根系活力Rv、根冠比R/S、净光合速率Pn和水分利用效率WUE均随胁迫温度的升高而逐渐降低,日温41℃时较CK降低163.76%、66.63%、28.59%、73.90%和65.11%。高温条件下提高湿度至70%后,ψw、Gs、Pn、Tr和WUE分别较50%处理均有显著提高,且可以在28d内基本恢复至CK水平,在恢复期内根系恢复良好且保持较高WUE;但湿度提高至90%后,Gs和ψw有所上升,而Pn、Rv、R/S、WUE未能显著提高,且在恢复期内WUE较低。故在35℃及以上的高温环境中,提高空气湿度至70%可有效降低高温对番茄的危害,也有利于番茄灾后恢复。  相似文献   
5.
为研究水氮耦合对苗期葡萄叶片氮代谢影响及最佳施氮量的制定,以一年生葡萄品种红提为研究试材,利用人工控制环境的方法,在温室内采用水、氮两因素各4水平的全面设计进行实验,水分处理分别为正常灌溉W1(田间最大持水量的70%~80%)、轻度胁迫W2(60%~70%)、中度胁迫W3(50%~60%)和重度胁迫W4(30%~40%)。4个氮素施用水平分别为1.5倍推荐施肥N1(施纯氮25.5g·m−2)、正常推荐施肥N2(17g·m−2)、0.5倍推荐施肥N3(8.5g·m−2)、不施用氮肥N4(不施氮)。处理时间为10、20、30、40d。结果表明,在水分条件适宜时,葡萄叶片硝酸还原酶(NR)、谷氨酰胺合成酶(GS)、谷氨酸合成酶(GOGAT)活性、可溶性蛋白、游离氨基酸含量随施氮量增加而提高;在轻度干旱胁迫时,增施氮肥可缓解干旱胁迫;在重度干旱胁迫时,高氮处理使设施葡萄叶片中氮代谢酶活性、游离氨基酸和可溶性蛋白含量降低。葡萄叶片内氮含量始终随处理时间增加而降低,在轻度水分胁迫下氮的转运率较高,而水分胁迫严重时,高氮处理与无氮处理时氮转运率均偏低。最终得出:在水分条件适宜(W1)和轻度水分胁迫(W2)下,N1处理葡萄叶片的氮代谢能力最高;在中度水分胁迫(W3)和重度水分胁迫(W4)下,N3、N4处理氮代谢能力最高。研究结果可为实际生产中设施葡萄的干旱灾害防控提供理论依据,既能有效缓解水分胁迫带来的危害,又避免生产中肥料的浪费。  相似文献   
6.
以葡萄品种“红提”为试材进行土壤水分和氮素水平双因素控制实验,土壤水分设置为田间持水量的70%~80%(W1)、60%~70%(W2)、50%~60%(W3)和30%~40%(W4)共4个水平,氮素设计1.5N(25.5g·m-2,N1)、1N(17g·m-2,N2)、0.5N(8.5g·m-2,N3)和0N(0g·m-2,N4)4个水平。其中以W1、N2为对照(CK),分别在葡萄苗期的前、中、后期测定叶片快速荧光诱导动力学特性,以了解设施葡萄水肥需求规律。结果表明:(1)葡萄叶片苗期不同观测阶段快速荧光诱导动力学变化曲线在不同水分、氮素、水氮耦合处理下基本相似,但是随着土壤水分和氮素水平的降低,不同特征点位置(OJIP)存在明显差异,水分和氮素水平越高,葡萄叶片最大荧光值越大。(2)随着土壤含水量的降低,葡萄苗期叶片在不同时期PSⅡ反应中心能量配比存在明显的不同,与对照组CK相比,吸收的光能被反应中心捕获的量子产额(ΦPo)、激子被反应中心捕获后,用于推动电子传递链中超过QA的其它电子受体的激子占用于推动QA还原激子的比率(ψo)、反应中心吸收的光能用于电子传递的量子产额(ΦEo)均受到抑制,用于热耗散的量子比率(ΦDo)得到促进;随着施氮量的降低,ΦPo、ψo、ΦEo出现不同程度的升高,ΦDo则呈下降趋势;在各水氮耦合处理中,W1N3处理下ΦPo最大,W2N4处理下ψo和ΦEo得到显著提升,CK处理下ΦDo值最高。(3)单位活性反应中心吸收的光能(ABS/RC)、捕获的用于还原QA的能量(TRo/RC)、耗散的能量(DIo/RC)随着土壤含水量的减少而升高,而土壤含水量越低,单位反应中心捕获的用于电子传递的能量(ETo/RC)值越小;与CK相比,N1、N3、N4处理的PSⅡ反应中心活性参数均得到促进;W1N3处理下ABS/RC和DIo/RC最高,W3N2处理下TRo/RC最大,ETo/RC在W2N4处理下得到显著促进。(4)PSⅡ最大光化学效率(Fv/Fm)随着土壤水分的减少而逐渐降低。土壤含水量越少,PSⅡ潜在光化学活性(Fv/Fo)越低;W2N3处理下可变荧光值最高,W1N3处理下Fv/Fm和Fv/Fo最大。  相似文献   
7.
基于部门间影响模型比较计划(The Inter-Sectoral Impact Model Intercomparison Project,ISIMIP)FAST-TRACK 轮模拟中由5种国际耦合模式比较计划第五阶段(CMIP5)全球气候资料驱动下的 6 种水稻格点作物模型模拟水稻产量的结果,评估了格点作物模型模拟中国区域水稻历史产量(1980-2004年)的时空分布模拟效果,并基于多种作物模型等权重集合平均(Multi-Crop Models Ensemble,MCME)对未来(2020-2099 年)4 种不同典型浓度路径(Recommended Concentration Pathways,RCPs)情景下的中国区域水稻产量进行预估。结果表明:相对于单种水稻模型模拟的结果,采用MCME可以有效提高水稻模型在中国区域的模拟能力。MCME 模拟中国区域水稻历史年平均产量相关系数R和RMSE分别为0.798和1540.6kg·hm-2,在空间上对东北和西南地区模拟效果较好,其它地区模拟效果一般,模拟水稻产量的空间变率较大。未来随着气温和CO2浓度的上升,水稻产量呈增加趋势,在RCP8.5 情景下中国区域平均水稻产量在21世纪末增加最多,达到22%,RCP6.0情景下约增产15%,RCP2.6和RCP4.5情景下水稻产量在 21世纪上半叶增产,21世纪下半叶产量保持稳定甚至略有下滑,在21世纪末分别增产约4%和10%,在空间上东北和西南地区水稻增产较多,可达 40%以上,其它水稻主产区如长江中下游地区和华南地区增产较小。  相似文献   
8.
以1a生葡萄植株“红提”为试材,在Venlo型试验温室内进行土壤水分和施氮量双因素区组试验。试验设置4个灌水水平,分别为正常灌溉量W1(田间最大持水量的70%~80%)、轻度水分胁迫W2(60%~70%)、中度水分胁迫W3(50%~60%)和重度水分胁迫W4(30%~40%);设置4个施氮水平,分别为1.5倍推荐施氮量(N1,25.5g plant-1)、正常推荐施氮量(N2,17g plant-1)、0.5倍推荐施氮量(N3,8.5g plant-1)和不施用氮肥(N4,0g plant-1)。每10d观测一次植株体内氮浓度和植株地上部生物量,利用不同水分条件下葡萄植株在一定生长时期内所获最大生物量时对应的最小氮浓度值即临界氮浓度(Nc)构建葡萄临界氮浓度稀释曲线模型,并在此基础上建立氮素吸收模型(Nupt)和氮素营养指数模型(NNI),对不同水分条件下葡萄氮营养状况进行定量诊断。结果表明:设施葡萄植株临界氮浓度与地上部生物量存在幂函数关系,随着灌水量的增加,葡萄植株临界氮浓度值增大,氮素吸收量及地上部生物量也呈增加趋势;在W1、W2水分条件下,葡萄植株生物量随施氮量增加而增加,而W3和W4处理葡萄生物量随施氮量增加呈先增后降的趋势;在相同水分条件下,氮浓度随施氮量增加而增加,随葡萄生长进程而降低;利用Nupt和NNI模型可对植株体内氮营养元素亏缺与否进行有效诊断。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号