首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   3篇
林业   4篇
农学   2篇
  21篇
农作物   4篇
水产渔业   2篇
畜牧兽医   6篇
  2023年   1篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2014年   2篇
  2013年   4篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2005年   5篇
  2004年   2篇
  1999年   1篇
  1998年   1篇
  1997年   3篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1988年   2篇
  1982年   2篇
  1966年   1篇
排序方式: 共有39条查询结果,搜索用时 62 毫秒
1.
Coniferous ectomycorrhiza was cleared in KOH and bleached in H2 02 . After the treatment, the structure of the Hartig net and inner mantle could be studied in detail in entire mycorrhizal short roots. The Hartig net and inner mantle were found to be formed by the same type of labyrinthic tissue, a result of morphogenetic processes during mycorrhiza formation. Even early phases of mycorrhizal infection could easily be detected, which makes the method very suitable for diagnosticating mycorrhiza formation accurately.  相似文献   
2.
Summary The effects on quantitative characters of the ml-o5 allele has been investigated by means of doubled haploid lines produced by the Hordeum bulbosum method. In one series of experiments the genetic background in each cross was found significantly to modify the negative pleiotropic effects. Doubled haploids were also produced from a F1 cross and tested in the field during two years, one with strong and one with weak mildew infections. In the first year only an insignificant reduction in grain yield was detected in the mlo lines, in the second it was significantly reduced with 5.9%. Thousand grain weights were, however, higher in the resistant lines. In both series of experiments the possibility to extract very high yielding mlo genotypes was demonstrated. The nature of the genetic background effect is discussed.  相似文献   
3.
Remote sensing techniques may be one way to narrow the range of uncertainty in extrapolating N2 emissions from small-scale to large-scale terrestrial ecosystems. In the present work we investigated the correlations between denitrification activity, soil moisture, and soil thermal infrared emissions. A field experiment was performed on two different agricultural soils, one loam and one silty clay. The results indicated that thermal infrared emissions can only be used to estimate the denitrification rate in soil within a limited range of soil moisture levels. Estimates of denitrification activity based on soil texture and moisture are, however, very likely to be a fruitful approach to generating large-scale N fluxes.  相似文献   
4.
Methane uptake to soil was examined in individual chambers at three small forest catchments with different treatments, Control, Limed and Nitrex sites, where N-deposition was experimentally increased. The catchments consisted of both well-drained forest and wet sphagnum areas, and showed uptake of CH4 from the ambient air. The lowest CH4 uptakes were observed in the wet areas, where the different treatments did not influence the uptake rate. In the well-drained areas the CH4 uptakes were 1.6, 1.4 and 0.6 kg ha–1 year–1 for the Limed, Control and Nitrex sites, respectively. The uptake of methane at the well-drained Nitrex site was statistically smaller than at the other well-drained catchments. Both acidification and increase in nitrogen in the soil, caused by the air-borne deposition, are the probable cause for the reduction in the methane uptake potential. Uptake of methane was correlated to soil water content or temperature for individual chambers at the well-drained sites. The uptake rate of methane in soil cores was largest in the 0- to 10-cm upper soil layer. The concentration of CH4 in the soil was lower than the atmospheric concentration up to 30 cm depth, where methane production occurred. Besides acting as a sink for atmospheric methane, the oxidizing process in soil prevents the release of produced methane from deeper soil layers reaching the atmosphere. Received: 27 September 1996  相似文献   
5.
The winter season has been identified as a significant contributor to N2O emissions from boreal soils, but our understanding of the processes regulating these emissions is fragmentary. We investigated potential N-sources and pathways involved in N2O formation in a frozen boreal forest soil by labeling soil samples with 15N-containing substrates, and measured rates of 15N2O/15N2 formation under both oxic and anoxic conditions. Our results showed that all N2O produced in the frozen samples originate from denitrification, but the rate-limiting factor is NO3 availability, which is largely governed by nitrification. This suggests that N2O formation in frozen boreal soils may be sustained for a prolonged period of time, but is governed by a delicate balance of the O2 regime.  相似文献   
6.
This is the first comprehensive study on the occurrence and distribution of piscine reovirus (PRV) in Atlantic salmon, Salmo salar L., caught in Norwegian rivers. PRV is a newly discovered reovirus associated with heart and skeletal muscle inflammation (HSMI), a serious and commercially important disease affecting farmed Atlantic salmon in Norway. A cross‐sectional survey based on real‐time RT‐PCR screening of head kidney samples from wild, cultivated and escaped farmed Atlantic salmon caught from 2007 to 2009 in Norwegian rivers has been conducted. In addition, anadromous trout (sea‐trout), Salmo trutta L., caught from 2007 to 2010, and anadromous Arctic char, Salvelinus alpinus (L.), caught from 2007 to 2009, were tested. PRV was detected in Atlantic salmon from all counties included in the study and in 31 of 36 examined rivers. PRV was also detected in sea‐trout but not in anadromous Arctic char. In this study, the mean proportion of PRV positives was 13.4% in wild Atlantic salmon, 24.0% in salmon released for stock enhancement purposes and 55.2% in escaped farmed salmon. Histopathological examination of hearts from 21 PRV‐positive wild and one cultivated salmon (Ct values ranging from 17.0 to 39.8) revealed no HSMI‐related lesions. Thus, it seems that PRV is widespread in Atlantic salmon returning to Norwegian rivers, and that the virus can be present in high titres without causing lesions traditionally associated with HSMI.  相似文献   
7.
Greenhouse gas (GHG) emissions from farmed organic soils can have a major impact on national emission budgets. This investigation was conducted to evaluate whether afforestation of such soils could mitigate this problem. Over the period 1994–1997, emissions of methane (CH4) and nitrous oxide (N2O) were recorded from an organic soil site in Sweden, forested with silver birch (Betula pendula Roth), using static field chambers. The site was used for grazing prior to forestation. Soil pH and soil carbon content varied greatly across the site. The soil pH ranged from 3.6 to 5.9 and soil carbon from 34 to 42%. The mean annual N2O emission was 19.4 (± 6.7) kg N2O‐N ha?1 and was strongly correlated with soil pH (r = ?0.93, P < 0.01) and soil carbon content (r = 0.97, P < 0.001). The N2O emissions showed large spatial and temporal variability with greatest emissions during the summer periods. The site was a sink for CH4 (i.e. ?0.8 (± 0.5) kg CH4 ha?1 year?1) and the flux correlated well with the C/N ratio (r = 0.93, P < 0.01), N2O emission (r = 0.92, P < 0.01), soil pH (r = ?0.95, P < 0.01) and soil carbon (r = 0.97, P < 0.001). CH4 flux followed a seasonal pattern, with uptake dominating during the summer, and emission during winter. This study indicates that, because of the large N2O emissions, afforestation may not mitigate the GHG emissions from fertile peat soils with acidic pH, although it can reduce the net GHG because of greater CO2 assimilation by the trees compared with agricultural crops.  相似文献   
8.
Liming of acidic agricultural soils has been proposed as a strategy to mitigate nitrous oxide (N2O) emissions, as increased soil pH reduces the N2O/N2 product ratio of denitrification. The capacity of different calcareous (calcite and dolomite) and siliceous minerals to increase soil pH and reduce N2O emissions was assessed in a 2-year grassland field experiment. An associated pot experiment was conducted using homogenized field soils for controlling spatial soil variability. Nitrous oxide emissions were highly episodic with emission peaks in response to freezing–thawing and application of NPK fertilizer. Liming with dolomite caused a pH increase from 5.1 to 6.2 and reduced N2O emissions by 30% and 60% after application of NPK fertilizer and freezing–thawing events, respectively. Over the course of the 2-year field trial, N2O emissions were significantly lower in dolomite-limed than non-limed soil (p < .05), although this effect was variable over time. Unexpectedly, no significant reduction of N2O emission was found in the calcite treatment, despite the largest pH increase in all tested minerals. We tentatively attribute this to increased N2O production by overall increase in nitrogen turnover rates (both nitrification and denitrification) following rapid pH increase in the first year after liming. Siliceous materials showed little pH effect and had no significant effect on N2O emissions probably because of their lower buffering capacity and lower cation content. In the pot experiment using soils taken from the field plots 3 years after liming and exposing them to natural freezing–thawing, both calcite (p < .01) and dolomite (p < .05) significantly reduced cumulative N2O emission by 50% and 30%, respectively, relative to the non-limed control. These results demonstrate that the overall effect of liming is to reduce N2O emission, although high lime doses may lead to a transiently enhanced emission.  相似文献   
9.
Drained organic forest soils represent a hotspot for nitrous oxide (N2O) emissions, which are directly related to soil fertility, with generally higher emissions from N-rich soils. Highest N2O emissions have been observed in organic forest soils with low pH. The mechanisms for these high emissions are not fully understood. Therefore, the present study was conducted to gain a deeper insight into the underlying mechanisms that drive high N2O emissions from acid soils. Specifically, we investigated the microbial community structure, by phospholipid fatty acid analysis, along a natural pH gradient in an organic forest soil combined with measurements of physico-chemical soil properties. These were then statistically related to site-specific estimates of annual N2O emissions along the same natural pH gradient. Our results indicate that acidic locations with high N2O emissions had a microbial community with an increased fungal dominance. This finding points to the importance of fungi for N2O emissions from acid soils. This may either be directly via fungal N2O production or indirectly via the effect of fungi on the N2O production by other microorganisms (nitrifiers and denitrifiers). The latter may be due to fungal mediated N mineralization, providing substrate for N2O production, or by creating favourable conditions for the bacterial denitrifier community. Therefore, we conclude that enhanced N2O emission from acid forest soil is related, in addition to the known inhibitory effect of low pH on bacterial N2O reduction, to a soil microbial community with increased fungal dominance. Further studies are needed to reveal the exact mechanisms.  相似文献   
10.
Continuous increase in glyphosate use in Sweden has caused concern about resistance development, not least in connection with the possible introduction of crops resistant to glyphosate. In Sweden, the main weed targeted by glyphosate is Elymus repens (L.) Gould. We sampled 69 clones of E. repens to assess the magnitude and geographical distribution of variation in susceptibility to glyphosate. Clones originated from four habitat types: intensively and extensively used arable lands, field vicinities and other habitats, including natural vegetation. Susceptibility varied greatly among clones with GR50 (50% of untreated growth reduction) spanning over at least one order of magnitude, 17–278 active ingredient ha?1 in a pot experiment setting. There was a strong covariance between geographic and genetic distance, but there was no evidence of geographic or genetic differentiation in GR50. Nor did GR50 vary consistently between habitat types. We conclude that no indication of past selection was found towards the resistance to glyphosate in E. repens clones in Sweden. The great variability in susceptibility suggests that there might be a potential for such selection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号