首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  国内免费   4篇
基础科学   7篇
  4篇
  2019年   2篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
排序方式: 共有11条查询结果,搜索用时 250 毫秒
1.
装载机发动机与液力变矩器功率匹配优化   总被引:7,自引:0,他引:7  
装载机发动机与液力变矩器之间的匹配对各自性能的发挥及整机牵引特性均有重要的影响。在拟合装载机发动机与液力变矩器有关特性曲线的基础上,以装载机的动力性为目标,建立发动机与液力变矩器匹配的优化模型,优化装载机发动机与液力变矩器的功率匹配,给出了算例并分析了优化结果。  相似文献   
2.
工程车辆自动变速控制系统仿真与试验   总被引:1,自引:0,他引:1  
对液力机械传动工程车辆遇到高强度载荷效率下降的问题进行了研究,推导了新的换挡规律。按照预先设定的经济型换挡规律,利用推导出的不同挡位下换挡点的通用公式,可将变矩器的效率限定在某一理想范围内。获取对换挡离合器执行机构的控制来达到对离合器油压的控制目的,仿真结果表明其跟踪效果良好。通过台架试验,取得了满意的效果。  相似文献   
3.
设计了一种主从手均为液压Stewart机构的主从控制系统,用于操作者以遥操作的方式进行复杂曲面的研磨,避免研磨粉尘对现场工作的工人造成呼吸道伤害。针对该机构需具有六维力反馈的工作要求,采用基于工作空间的四通道力觉双向伺服策略,以降低连杆差异和外界干扰力等非线性因素的影响,提高力反馈精度。在此基础上提出了六维的策略切换控制,解决因从端遭遇刚性冲击引起的主手震荡问题。通过柔性及刚性碰撞实验证明了该策略的有效性。  相似文献   
4.
工程车辆四参数自动变速系统的试验   总被引:2,自引:0,他引:2  
以ZL50型轮式装载机动力换挡变速器为控制对象,在考虑工作泵工况变化的基础上,开发了以工控机为控制核心的四参数换挡控制系统,在工程车辆电控系统试验台上进行了四参数自动变速的台架试验。结果表明,该系统能根据试验工况的变化按换挡规律自动换挡,四参数换挡规律更符合工程车辆的实际工况,对改善工程车辆的动力性和节能有实际意义。  相似文献   
5.
提高液力变矩器输出功率为目标的换挡规律   总被引:1,自引:1,他引:0  
提出了一种以提高液力变矩器涡轮输出功率为目标的换挡规律,运用Matlab/Simulink建立了仿真模型.验证换挡规律的正确性。结果表明,该换挡规律可以提高涡轮的输出功率,对改善工程车辆的动力性和节能有实际意义。  相似文献   
6.
工程车辆四参数自动换挡策略研究   总被引:10,自引:2,他引:8  
工程车辆的工作油泵消耗的发动机功率是随着工况而变化,在以往的自动换挡策略研究中都把它作为固定值考虑。在工程车辆三参数换挡策略的基础上,提出四参数换挡策略,考虑工作油泵消耗功率的变化,建立工程车辆传动系统的数学模型,进行计算机仿真,结果表明,四参数换挡策略更加符合工程车辆的实际情况。  相似文献   
7.
工程机器人自主作业时,工程机器人动臂举升、前臂摆动重心上升过程中需要克服自身重力做功,而在工程机器人动臂下降、前臂摆动重心下降过程中,自身重力要参与做功,影响工程机器人的运动速度,进而影响工程机器人自主作业的轨迹跟踪效果。针对这一问题,建立了工程机器人动臂、前臂的动力学模型,探讨采用最小二乘拟合法辨识动力学参数,进行工程机器人动臂、前臂的在线重力补偿,以消除在自主作业过程中重力做功对轨迹跟踪的影响。最后,在工程机器人试验台上进行了试验。试验结果表明,在线重力补偿可有效地补偿工程机器人自主作业过程自身重力,消除工程机器人动臂和前臂在运动过程中重力做功对自主作业轨迹跟踪过程的影响,有利于减小轨迹跟踪误差,提高工程机器人自主作业轨迹跟踪的性能。  相似文献   
8.
为拓展六足机器人的应用,提高六足机器人对工作环境的适应性及工作的灵活性,该文提出了一种基于并联腿的六足步行机器人结构。该步行机器人由2个6-UPU并联机构腿和6个足构成,每个足上各安装1个辅助腿,共有18个自由度,辅助腿可根据环境改变步行机器人身体的高度,增强了克服障碍物与环境的适应能力。首先,对该机构进行运动学分析,通过腿部6-UPU并联机构的运动学逆解求解,得到机器人运动过程中并联腿各分支的状态;其次,通过对人体行走规律的研究,根据运动学逆解的结果,设计了步行机器人的2种步态,分别为跨步行走步态和越障步态;之后,根据样机材质,在ADMAS环境下对六足机器人的模型组件增加质量,进行2种步态的行走仿真,跨步行走步态一个步态周期耗时23.734 2 s,步行机器人机体前进400 mm,平均行走速度为1 011.2 mm/min,而越障步态一个步态周期耗时18 s,步行机器人机体前进100 mm,平均行走速度为333.3 mm/min;最后,选用两片STM32芯片为核心处理器进行控制系统设计,两片STM32芯片分别进行数据采集与PID运算,二者间采用串口通信实现数据传输,跨步行走步态一个步态周期耗时24.85 s,步行机器人机体前进385 mm,平均行走速度为929.6 mm/min,而越障步态一个步态周期耗时20.8 s,步行机器人机体前进90 mm,平均行走速度为259.6 mm/min。试验表明:跨步行走步态下,完成一个步态周期内的耗时与平均行走速度的偏差分别为5%、8%,而在越障步态下,完成一个步态周期内的耗时与平均行走速度的偏差分别为13%、22%,绘制了2个平行腿移动平台中心点的规划轨迹和试验轨迹,试验轨迹在步行阶段,试验结果滞后于2种步态的模拟结果。其偏差可归结为试验样机中各电动缸自身特性、装配精度、部件的质量差异等因素的影响,但样机能够按照设定的步态完整设定的行走任务,从而验证了仿真分析的正确性。该研究为进一步研究六足并联腿步行机器人实现未知倾斜面或环境中的稳定行走提供了初步的实践依据。  相似文献   
9.
为拓展六足机器人的应用,提高六足机器人对工作环境的适应性及工作的灵活性,该文提出了一种基于并联腿的六足步行机器人结构。该步行机器人由2个6-UPU并联机构腿和6个足构成,每个足上各安装1个辅助腿,共有18个自由度,辅助腿可根据环境改变步行机器人身体的高度,增强了克服障碍物与环境的适应能力。首先,对该机构进行运动学分析,通过腿部6-UPU并联机构的运动学逆解求解,得到机器人运动过程中并联腿各分支的状态;其次,通过对人体行走规律的研究,根据运动学逆解的结果,设计了步行机器人的2种步态,分别为跨步行走步态和越障步态;之后,根据样机材质,在ADMAS环境下对六足机器人的模型组件增加质量,进行2种步态的行走仿真,跨步行走步态一个步态周期耗时23.734 2 s,步行机器人机体前进400 mm,平均行走速度为1 011.2 mm/min,而越障步态一个步态周期耗时18 s,步行机器人机体前进100 mm,平均行走速度为333.3 mm/min;最后,选用两片STM32芯片为核心处理器进行控制系统设计,两片STM32芯片分别进行数据采集与PID运算,二者间采用串口通信实现数据传输,跨步行走步态一个步态周期耗时24.85 s,步行机器人机体前进385 mm,平均行走速度为929.6 mm/min,而越障步态一个步态周期耗时20.8 s,步行机器人机体前进90 mm,平均行走速度为259.6 mm/min。试验表明:跨步行走步态下,完成一个步态周期内的耗时与平均行走速度的偏差分别为5%、8%,而在越障步态下,完成一个步态周期内的耗时与平均行走速度的偏差分别为13%、22%,绘制了2个平行腿移动平台中心点的规划轨迹和试验轨迹,试验轨迹在步行阶段,试验结果滞后于2种步态的模拟结果。其偏差可归结为试验样机中各电动缸自身特性、装配精度、部件的质量差异等因素的影响,但样机能够按照设定的步态完整设定的行走任务,从而验证了仿真分析的正确性。该研究为进一步研究六足并联腿步行机器人实现未知倾斜面或环境中的稳定行走提供了初步的实践依据。  相似文献   
10.
在线重力补偿下工程机器人自主作业轨迹跟踪性能分析   总被引:1,自引:0,他引:1  
工程机器人自主作业时,工程机器人动臂举升、前臂摆动重心上升过程中需要克服自身重力做功,而在工程机器人动臂下降、前臂摆动重心下降过程中,自身重力要参与做功,影响工程机器人的运动速度,进而影响工程机器人自主作业的轨迹跟踪效果。针对这一问题,建立了工程机器人动臂、前臂的动力学模型,探讨采用最小二乘拟合法辨识动力学参数,进行工程机器人动臂、前臂的在线重力补偿,以消除在自主作业过程中重力做功对轨迹跟踪的影响。最后,在工程机器人试验台上进行了试验。试验结果表明,在线重力补偿可有效地补偿工程机器人自主作业过程自身重力,消除工程机器人动臂和前臂在运动过程中重力做功对自主作业轨迹跟踪过程的影响,有利于减小轨迹跟踪误差,提高工程机器人自主作业轨迹跟踪的性能。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号