首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
农学   1篇
农作物   1篇
畜牧兽医   11篇
  2020年   2篇
  2016年   1篇
  2014年   2篇
  2012年   1篇
  2011年   2篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
Journal of Crop Science and Biotechnology - Two domestic wheat varieties were grown in the growth chamber set at 17°C, 20°C, 23°C and 26°C on average after the emergence of...  相似文献   
2.
The objective of this study was to evaluate whether changes in NaCl concentration in a fertilization medium could improve normal fertilization and preimplantation development of bovine oocytes. In vitro matured bovine oocytes were inseminated with frozen-thawed semen for 18 hr in a Tyrode's medium with albumin, lactate and pyruvate (TALP), to which 114 (TALP-114), 96 (TALP-96) or 78 (TALP-78) mM NaCl was added. Presumptive zygotes were cultured for 192 hr in a modified TALP containing 90 mM NaCl, 1.5 mM glucose, 0.3% (w/v) BSA, minimal essential medium (MEM) essential and nonessential amino acids, and insulin-transferrin-selenium complex. Lower polyspermy rate was obtained by the insemination in TALP-96 (7.8 +/- 2.3%) than by the insemination in TALP-114 (25.6 +/- 1.4%), without decrease in male pronucleus (MPN) formation. Fertilization in TALP-78 also yielded decreased polyspermic fertilization (3.8 +/- 1.5%), but significant decrease in MPN formation was found (63.1 +/- 3.1%). In preimplantation development, more blastocysts developed from oocytes inseminated in TALP-96 (24.1 +/- 1.7%) than from oocytes inseminated in TALP-114 (16.8 +/- 1.4%). TALP-78, however, did not improve preimplantation development beyond the 8-cell stage compared with TALP-114. Mean cell number of blastocyst was higher when oocytes were fertilized in TALP-96 (137.0 +/- 4.5) than in TALP-114 (123.1 +/- 5.1) and in TALP-78 (102.3 +/- 4.5). These results demonstrate that insemination of bovine oocytes in a TALP with decreased NaCl concentration (96 mM) improves blastocyst formation and embryo viability. Decrease in NaCl concentration below 96 mM, however, may delay or inhibit MPN formation, and inhibits subsequent development in vitro.  相似文献   
3.
In this study, we determined how rosiglitazone (RSG) differentially affected hippocampal neurogenesis in mice fed a low-fat diet (LFD) or high-fat diet (HFD; 60% fat). LFD and HFD were given to the mice for 8 weeks. Four weeks after initiating the LFD and HFD feeding, vehicle or RSG was administered orally once a day to both groups of mice. We measured cell proliferation and neuroblast differentiation in the subgranular zone of the dentate gyrus using Ki67 and doublecortin (DCX), respectively, as markers. In addition, we monitored the effects of RSG on the levels of DCX and brain-derived neurotrophic factor (BDNF) in hippocampal homogenates. At 8 weeks after the LFD feeding, the numbers of Ki67- and DCX-positive cells as well as hippocampal levels of DCX and BDNF were significantly decreased in the RSG-treated group compared to the vehicle-treated animals. In contrast, the numbers of Ki67- and DCX-positive cells along with hippocampal levels of DCX and BDNF in the HFD fed mice were significantly increased in the RSG-treated mice compared to the vehicle-treated group. Our data demonstrate that RSG can modulate the levels of BDNF, which could play a pivotal role in cell proliferation and neuroblast differentiation in the hippocampal dentate gyrus.  相似文献   
4.
In this study, we investigated the effects of N-acetylserotonin (NAS) on cell proliferation and neuroblast differentiation in the mouse dentate gyrus using anti-Ki67 and anti-doublecortin (DCX) antibodies. Ki67 is expressed in the nucleus or on the surface of chromosomes during all of the active phases of the cell cycle, and DCX is expressed in neuronal precursor cells as well as in immature neurons. At 17 weeks of age, 20 mg/kg of NAS or the same volume of vehicle was intraperitoneally administered once a day for 3 weeks. The animals were sacrificed 2 hr after the last vehicle or NAS treatment. NAS treatment significantly increased the number of Ki67-positive nuclei and DCX-immunoreactive neuroblasts with well-developed dendrites (tertiary dendrites) compared to the vehicle-treated group. However, the number of DCX-immunoreactive neuroblasts without tertiary dendrites was not changed. The administration of NAS also significantly increased the protein levels of brain-derived neurotrophic factor (BDNF) in the dentate gyrus. This result suggests that NAS significantly promotes cell proliferation and the number of differentiating neuroblasts with tertiary dendrites through an increase in BDNF levels in the mouse dentate gyrus.  相似文献   
5.
This study was conducted to evaluate how exogenous amino acids could affect preimplantation development of ICR mouse embryos. Two-cell embryos collected from naturally mated mice were cultured in amino acid-, glucose- and phosphate-free preimplantation (P)-1 medium. In Experiments 1, 19 amino acids (aa; 1% and 0.5% of MEM essential and nonessential amino acid solutions, respectively) were added to P-1 medium supplemented with either fatty acid-free bovine serum albumin (BSA; 3 mg/mL) or human follicular fluid (hFF; 10%). Regardless of BSA or hFF addition, embryo development to the morula (84 to 86% vs. 97 to 100%) and the blastocyst (54% vs. 93 to 94%) stages was significantly (P<0.05) enhanced by the addition of aa compared with no addition. In Experiment 2, the cell number of blastomeres and inner cell mass (ICM) cells in blastocysts and the ratio of ICM cell to trophectodermal cell (TE) were evaluated after aa addition. In both BSA- and hFF-containing P-1 medium, a significant increase in total blastomere number were found after aa addition (47 to 52 vs. 62 to 63 cells) compared with no addition. However, the ICM/TE ratio was not significantly affected by aa supplementation in both media, while ICM cell number was greatly increased after aa addition in hFF-containing medium (12 vs. 17 cells). When blastocysts were further cultured up to 162 hr post-hCG injection, development to the hatched blastocyst stage was significantly promoted by aa addition (0% vs. 11 to 20%) in both BSA- and hFF-containing media. In conclusion, aa significantly promote the preimplantation development to the hatched blastocyst stage and such effect mainly exerted on supporting blastomere proliferation.  相似文献   
6.
Aluminum (Al) accumulation increases with aging, and long-term exposure to Al is regarded as a risk factor for Alzheimer''s disease. In this study, we investigated the effects of Al and/or D-galactose on neural stem cells, proliferating cells, differentiating neuroblasts, and mature neurons in the hippocampal dentate gyrus. AlCl3 (40 mg/kg/day) was intraperitoneally administered to C57BL/6J mice for 4 weeks. In addition, vehicle (physiological saline) or D-galactose (100 mg/kg) was subcutaneously injected to these mice immediately after AlCl3 treatment. Neural stem cells, proliferating cells, differentiating neuroblasts, and mature neurons were detected using the relevant marker for each cell type, including nestin, Ki67, doublecortin, and NeuN, respectively, via immunohistochemistry. Subchronic (4 weeks) exposure to Al in mice reduced neural stem cells, proliferating cells, and differentiating neuroblasts without causing any changes to mature neurons. This Al-induced reduction effect was exacerbated in D-galactose-treated mice compared to vehicle-treated adult mice. Moreover, exposure to Al enhanced lipid peroxidation in the hippocampus and expression of antioxidants such as Cu, Zn- and Mn-superoxide dismutase in D-galactose-treated mice. These results suggest that Al accelerates the reduction of neural stem cells, proliferating cells, and differentiating neuroblasts in D-galactose-treated mice via oxidative stress, without inducing loss in mature neurons.  相似文献   
7.
Laminaria japonica is widely cultivated in East Asia, including South Korea. Fucoidan, a main component of L. japonica, protects neurons from neurological disorders such as ischemia and traumatic brain injury. In the present study, we examined the effects of extract from fermented L. japonica on the reduction of proliferating cells and neuroblasts in mice that were physically (with electric food shock) or psychologically (with visual, auditory and olfactory sensation) stressed with the help of a communication box. Vehicle (distilled water) or fermented L. japonica extract (50 mg/kg) were orally administered to the mice once a day for 21 days. On the 19th day of the treatment, physical and psychological stress was induced by foot shock using a communication box and thereafter for three days. Plasma corticosterone levels were significantly increased after exposure to physical stress and decreased Ki67 positive proliferating cells and doublecortin immunoreactive neuroblasts. In addition, western blot analysis demonstrated that physical stress as well as psychological stress decreased the expression levels of brain-derived neurotrophic factor (BDNF) and the number of phosphorylated cAMP response element binding protein (pCREB) positive nuclei in the dentate gyrus. Fermentation of L. japonica extract significantly increased the contents of reduced sugar and phenolic compounds. Supplementation with fermented L. japonica extract significantly ameliorated the increases of plasma corticosterone revels and decline in the proliferating cells, neuroblasts, and expression of BDNF and pCREB in the physically stressed mice. These results indicate that fermented L. japonica extract has positive effects in ameliorating the physical stress induced reduction in neurogenesis by modulating BDNF and pCREB expression in the dentate gyrus.  相似文献   
8.
Natural toxic substances have a bitter taste and their ingestion sends signals to the brain leading to aversive oral sensations. In the present study, we investigated chronological changes in c-Fos immunoreactivity in the nucleus tractus solitarius (NTS) to study the bitter taste reaction time of neurons in the NTS. Equal volumes (0.5 mL) of denatonium benzoate (DB), a bitter tastant, or its vehicle (distilled water) were administered to rats intragastrically. The rats were sacrificed at 0, 0.5, 1, 2, 4, 8, or 16 h after treatment. In the vehicle-treated group, the number of c-Fos-positive nuclei started to increase 0.5 h after treatment and peaked 2 h after gavage. In contrast, the number of c-Fos-positive nuclei in the DB-treated group significantly increased 1 h after gavage. Thereafter, the number of c-Fos immunoreactive nuclei decreased over time. The number of c-Fos immunoreactive nuclei in the NTS was also increased in a dose-dependent manner 1 h after gavage. Subdiaphragmatic vagotomy significantly decreased DB-induced neuronal activation in the NTS. These results suggest that intragastric DB increases neuronal c-Fos expression in the NTS 1 h after gavage and this effect is mediated by vagal afferent fibers.  相似文献   
9.
The objective of this study was to determine if the transfection of human prourokinase (ProU) gene and passage number of transfected ear fibroblasts affected in vitro development of bovine transgenic nuclear transfer (NT) embryos. An expression plasmid for human ProU was constructed by inserting a bovine beta-casein promoter, a green fluorescent protein (GFP) marker and human ProU gene into a pcDNA3 plasmid and transfected into bovine ear fibroblasts using a lipid mediated method. Abattoir derived oocytes were enucleated at 18-20 hr post maturation and a single donor cell was transferred into the perivitelline space of a recipient oocyte. After fusion and activation, the couplets were cultured in modified synthetic oviductal fluid (mSOF) medium for 168 hr. In Experiment 1, significantly lower rate in blastocysts formation (10.3%) was observed in transfected donor cells at early passage than that in nontransfected counterparts (22.1%, P<0.05). In Experiment 2, development to blastocysts and GFP expression in blastocysts were not significantly different between early (3-7) and late (8-12) passage donor cells (10.3 vs. 11.3% and 54.5 vs. 41.7%, respectively). This study indicates that in vitro development of bovine transgenic NT embryos is negatively influenced by transfection of human ProU gene into donor fibroblasts. However, passage number of transfected ear fibroblasts does not affect in vitro development of bovine transgenic NT embryos.  相似文献   
10.
The present study was conducted to establish an efficient production system for bovine transgenic somatic cell nuclear transfer (SCNT) embryos, the effect of various conditions of donor cells including cell type, size, and passage number on the developmental competence of transgenic SCNT embryos were examined with their expression rates of a marker gene. An expression plasmid for human prourokinase was constructed by inserting a bovine beta-casein promoter, a green fluorescent protein (GFP) marker gene, and a human prourokinase target gene into a pcDNA3 plasmid. Three types of bovine somatic cells including two adult cells (cumulus cells and ear fibroblasts) and fetal fibroblasts were prepared and transfected with the expression plasmid using a liposomal transfection reagent, Fugene6, as a carrier. In Experiment 1, three types of bovine cells were transfected at passages 2 to 4, and then trypsinized and GFP-expressing cells were randomly selected and used for SCNT. Developmental competence and rates of GFP expression in bovine transgenic SCNT embryos reconstructed with cumulus cells were significantly higher than those from fetal and ear fibroblasts. In all cell types used, GFP expression rates of SCNT embryos gradually decreased with the progression of embryo development. In Experiment 2, the effect of passage number of cumulus cells in early (2 to 4) and late (8 to 12) passages was investigated. No significant differences in the development of transgenic SCNT embryos were observed, but significantly higher GFP expression was shown in blastocysts reconstructed with cumulus cells at early passage. In Experiment 3, different sizes of GFP-expressing transfected cumulus cells [large (>30 microm) or small cell (<30 microm)] at passages 2 to 4 were used for SCNT. A significant improvement in embryo development and GFP expression was observed when small cumulus cells were used for SCNT. Taken together, these results demonstrate that (1) adult somatic cells as well as fetal cells could serve as donor cells in transgenic SCNT embryo production and cumulus cells with small size at early passage were the optimal cell type, and (2) transgenic SCNT embryos derived from adult somatic cells have embryonic development potential.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号