首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  国内免费   3篇
农学   4篇
基础科学   2篇
  1篇
综合类   2篇
畜牧兽医   1篇
  2023年   1篇
  2022年   1篇
  2020年   1篇
  2019年   4篇
  2017年   1篇
  2016年   1篇
  2010年   1篇
排序方式: 共有10条查询结果,搜索用时 764 毫秒
1
1.
基于高通量测序的藜麦连作根际土壤微生物多样性研究   总被引:8,自引:0,他引:8  
为了揭示连作藜麦土壤细菌群落结构和多样性的变化,采用高通量测序技术(Illumina-MiSeq)对不同处理(种植1 a、种植2 a)的连作藜麦根际土壤细菌进行16S rRNA基因V4区测序。结果表明,种植1 a较种植2 a的藜麦根际土壤细菌群落丰度和多样性指数都要高,其中,种植1 a较种植2 a的藜麦Chao1指数平均值增加16.4%,ACE指数平均值增加22.9%,Shannon指数平均值增加2.3%;菌群的分类学组成分析结果表明,重茬种植后,伦茨氏菌属、溶杆菌属、中慢生根瘤菌属、丛毛单菌属多样性增多;分枝杆菌属、藤黄单胞菌属、芽单胞菌属、浮霉状菌属等细菌多样性减少。功能预测分析表明,重茬种植后,编码细胞膜转运的功能基因、编码翻译、复制和修复的功能基因、编码外源性物质降解和代谢、多糖生物合成和代谢的功能基因大量减少,编码核苷酸代谢、萜类化合物的代谢、辅因子和维生素的代谢等功能基因少量减少;而编码信号转导和脂类代谢的功能基因有少量增加。  相似文献   
2.
石蜡切片是常规制片技术中应用最普遍的方法,主要用于观察组织细胞结构。本研究以苹果花药作为实验材料,通过改良脱水,染色等制片环节,即增加脱水时乙醇的浓度梯度,以及用埃里希氏(Ehrlich)苏木精染色15min,得到了染色更均匀,细胞完整度更高的玻片标本。实验结果表明,用改良后的制片方法得到切片组织更完整,更能清晰的辨认出花粉细胞的结构,利于观察。  相似文献   
3.
‘嘎啦’苹果花药培养种质创新   总被引:3,自引:1,他引:2  
【目的】单倍体花药离体培养是农作物包括果树育种中种质资源创新的最有效方法之一,苹果是染色体高度杂合且自交不亲和树种之一。在当前苹果主栽品种中,‘嘎啦’具有早熟、丰产、稳产、多抗的优良性状,是苹果育种的重要种质资源之一。花药单倍体育种也是苹果新品种培育的重要手段。本研究通过‘嘎啦’苹果花药培养诱导胚状体并获得纯合再生植株,为创制新的纯合体种质资源,加速苹果新品种培育进程提供材料。【方法】采集‘嘎啦’苹果单核靠边期到双核早期的花药(未开放的花蕾),低温处理后进行离体培养,经胚状体诱导,分化培养形成再生苗,再经生根培养获得花药再生植株。之后利用FACS流式细胞仪对再生植株进行倍性分析。取再生植株叶片分离DNA,选用80个来源于苹果HIDRAS数据库的SSR标记对所有植株进行PCR扩增,经过凝胶电泳和荧光毛细管电泳鉴定再生植株纯合基因型。移栽成活后,对每个再生株系进行形态学特征观察及统计分析。【结果】过去3年中,共接种的74 200个‘嘎啦’花药,从未被污染的5万多个花药中成功诱导形成386个胚状体(胚状体诱导率0.7%),经分化培养获得64株再生苗(植株再生率16.6%),最终经生根培养、移栽获得30个成活再生株系。其中包括28个二倍体株系,1个单倍体株系和1个四倍体株系。SSR标记用于纯合性鉴定,PAGE结果表明再生株系均为花粉(小孢子)单倍体细胞来源。为了鉴定这些再生植株基因型,从80个SSR中筛选出17个SSR标记(其余SSR标记不具有多态性或带型杂乱)对所获得的30个再生株系进行基因型鉴定。17个SSR标记所对应的PCR扩增物能有效区分鉴定不同再生植株基因型。继代培养60 d后的形态学观察显示不同再生株系的株高、叶长、叶宽等特征差异明显。不同二倍体纯合植株的植物学特征也存在差异:Gala 5植株相对较高,叶基变宽,叶尖渐尖;Gala 7叶片变小、变厚,叶柄变短且基部宽大,叶色深且有很强的光泽度;Gala 18叶片较小,叶数较多。纯合二倍体再生植株长势弱于‘嘎啦’杂合供体,但强于单倍体和纯合四倍体。【结论】采用优化花药培养技术,成功获得了一批苹果纯合体再生植株种质并建立了SSR标记鉴定体系。这些新的种质很大程度丰富了苹果育种亲本种质资源,为挖掘‘嘎啦’苹果优良性状基因提供了重要材料,为后期的田间性状筛选,杂交育种奠定了基础。  相似文献   
4.
为加快燕麦分子辅助育种进程,以1981-1983年进行抗旱性鉴定的42份燕麦种质(18份低抗、13份中抗、11份高抗)和12个未鉴定的燕麦育成品种为试验材料,采用PstⅠ/MspⅠ双酶切的dd-GBS基因分型技术构建燕麦简化基因组参考序列,通过Stacks、主成分分析、Fisher Test和Blast分析研究燕麦SNP分子标记。测序结果表明,燕麦个体的高质量reads数在4 111 218~19 019 296,利用Stacks软件成功组装753 325条燕麦简化基因组参考序列,共注释74 657个群体SNP位点。主成分分析表明,燕麦SNP基因型大致聚为2簇,其中一簇主要由14份低抗种质组成,另一簇则包含全部11份高抗种质。进一步的Fisher Test差异显著性统计分析表明,相对于燕麦低抗种质材料,共有2 937个SNP标记在燕麦高抗种质材料中差异显著((错误发现率False Discovery Rate,FDR)0. 05),其中,55个SNP标记差异极显著(FDR 0. 001)。将上述55个SNP标记所在源序列与小麦基因组序列在Phytozome数据库中进行比对(Blast)发现,14个SNP位点可能参与燕麦抗旱生物学信号通路基因的表达,其中包括参与植物激素信号转导来调控燕麦的抗逆性。通过GBS技术成功组装的燕麦简化基因组参考序列,丰富了当前燕麦的基因组数据库。通过统计学分析得到的55个SNP标记与小麦基因组数据库进行比对,结果发现,14个SNP标记将对燕麦分子辅助育种和加速育种进程具有重要的指导意义,更可为今后的燕麦种质资源大规模快速筛选奠定技术基础。  相似文献   
5.
藜麦为近年引进我国的一种抗逆性强、营养全面的杂粮作物,一经引进就得到了快速的发展,但是品种的更新换代速度却无法满足产业发展的需求。结合国内外研究进展,概述了藜麦种质资源的收集及应用、常规育种、杂交育种、分子辅助育种等技术研究进展,并对未来藜麦育种工作中需要开展的工作提出了展望,以期为育种工作者提供借鉴。  相似文献   
6.
介绍机械化深松技术要点,对加强机械化深松技术推广工作提出建议。  相似文献   
7.
针对CAN总线技术在农业机械上已大规模应用,但缺少将CAN总线技术与物联网技术结合的农机远程监测系统,存在专用服务器租金过高、相关软件开发周期长等问题,研究一种基于OneNet开放平台的玉米中耕变量施肥机远程监测系统。通过STM32103主控制器进行数据的处理与转化,BC20无线通信模块负责数据传输,借助OneNet平台实现PC端和移动端对于施肥机的速度、坐标、排肥轴转速等状态参数的实时远程监测。试验结果表明,整套系统数据传输延时低,性能稳定,数据传输成功率在95%以上,满足复杂田间环境工作要求。实现对于玉米中耕变量施肥机状态参数的远程实时监测。  相似文献   
8.
为了解杂交粳稻在江汉平原的直播生长特性,以3个杂交粳稻为材料,设置3个施氮水平探讨了直播粳稻的生长和产量差异。结果表明:随着施氮量的增加,直播粳稻的生育期不同程度延长;分蘖动态受施氮水平的影响,表现为高峰苗出现时间因施氮量出现不同程度的推后;随着施氮量的增加,直播粳稻的产量总体上呈现增产的趋势,产量差异达极显著水平(P0.01);不同施氮量下,甬优4949的产量最高,与甬优1540和甬优4149相比,产量差异达极显著水平(P0.01),甬优1540和甬优4149产量差异不显著。  相似文献   
9.
为了研究ATF6通路介导的山羊胎盘滋养层细胞(goat trophoblast cell,GTC)凋亡的作用机制,需要构建激活转录因子6(ATF6)基因慢病毒干扰载体用于试验。采用RNA干扰技术,设计合成以山羊ATF6基因CDS区为靶点的shRNA,构建重组慢病毒载体、慢病毒包装、慢病毒转染、RT-qPCR和Western blot等方法,筛选出干扰效率达60%的shRNA干扰片段,构建出可用于今后ATF6通路相关研究的重组慢病病毒干扰载体,为山羊妊娠相关研究提供材料。  相似文献   
10.
为解决草莓采摘过程中被遮挡及目标较小情况下漏检的问题,同时提升草莓的识别精度与计算速率,该研究提出了一种基于改进的轻量级Mobile-YOLOv5s草莓识别检测算法。首先,为了提高计算效率,使用了轻量化的MobileNetV3网络替代了原始的YOLOv5s主干网络,并引入了Alpha-IoU损失函数以加快模型的收敛速度,提高对重叠目标的识别准确率;其次,考虑到草莓目标较小的情况,使用K-Means++算法对原始YOLO的anchor进行重聚类,并增加了一个检测头,使其更加适应草莓的尺寸。试验结果表明,改进后的网络模型检测帧率为44帧/s,比原模型提升了15.7%;计算量为8.3×109/s,比原模型降低了48%;模型大小为4.5 MB,比原模型降低了41.5%;成熟草莓检测精度为99.5%,均值平均精度为99.4%,相较于原YOLOv5s算法分别提高了3.6和9.2个百分点。改进后的模型可以更快速、准确地识别出各阶段的草莓,为草莓智能化采摘提供技术支撑。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号