首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   4篇
  国内免费   5篇
农学   5篇
基础科学   1篇
  5篇
综合类   26篇
农作物   18篇
畜牧兽医   1篇
植物保护   2篇
  2024年   2篇
  2023年   5篇
  2022年   10篇
  2021年   8篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2016年   2篇
  2014年   1篇
  2013年   1篇
  2011年   2篇
  2010年   1篇
  2009年   4篇
  2008年   5篇
  2007年   1篇
  2006年   3篇
  2005年   6篇
  2004年   4篇
排序方式: 共有58条查询结果,搜索用时 31 毫秒
1.
接种根瘤菌对南疆春大豆结瘤和生长的影响   总被引:1,自引:0,他引:1  
为筛选南疆结瘤能力强且对春大豆生长发育、产量有积极影响的大豆根瘤菌菌株,探讨大豆品种和根瘤菌的匹配性,以前期分离、鉴定、纯化的3株根瘤菌菌株为材料,对南疆地区3个春大豆品种进行了田间接种试验,测定大豆根瘤数、根瘤干重、大豆地上部干物质积累分配、产量及其构成因素的变化.结果表明:接种不同根瘤菌均能促进南疆不同春大豆品种根系结瘤,促进结瘤效果存在差异,黑农61接种T6能显著增加中后期根瘤数、根瘤干重,新大豆8号和石大豆2号接种T6和SN7-2能显著增加结瘤数和根瘤干重,SN7-2在春大豆生育前期、T6在生育后期作用明显;黑农61接种SMH12,新大豆8号和石大豆2号接种T6和SN7-2能显著促进干物质积累;新大豆8号接种SN7-2、石大豆2号接种T6、黑农61接种SMH12能促进干物质向生殖器官分配.接种根瘤菌能通过增加主茎节数、单株荚数和百粒重提高春大豆产量,新大豆8号与SN7-2、石大豆2号与SN7-2、黑农61与SMH12匹配性最好.  相似文献   
2.
通过系统观察不同土壤类型棉花土壤水分动态变化规律,研究膜下滴灌棉花土壤水分的变化,以有效地提高棉花产量和水分利用效率。结果表明:膜下滴灌棉花土壤含水量呈现规律性的变化:在黏土地上,土壤含水量的变化趋势近似于抛物线,0~20cm土壤含水量最低,随土层深度增加,土壤含水量逐渐增加,至60-80cm达最大,随后又降低。而在沙土地,土壤含水量的变化趋势与黏土地相反。这种变化与土壤的理化、生物学特性以及棉花根系的生长发育有关。不同土壤类型膜下滴灌棉花产量、总耗水量及水分利用效率存在明显差异。  相似文献   
3.
为明确匀播冬小麦根系对种植密度的响应,以多穗型冬小麦品种新冬22号为材料,设置了123万、156万、204万、278万、400万株/hm2共5个种植密度,研究了根长密度、根表面积、根系直径、根干质量密度时空分布.结果表明,新冬22号根长密度、根系表面积、根干质量密度均在抽穗期达到最大值,均呈先增加后降低的趋势,越冬期123万株/hm2处理的根长密度、根表面积和根干质量密度均大于其他处理.拔节期、抽穗期、成熟期根长密度、根表面积均由高到低依次为156万株/hm2处理、204万株/hm2处理、123万株/hm2处理、278万株/hm2处理、400万株/hm2处理.5种不同密度处理下0~60 cm土层根系分布最多,占总根长的95.13%~97.84%,说明匀播冬小麦根系主要分布在0~60 cm,随深度的增加根系急剧减少.越冬后,0~40 cm土层的根系增长速率最为显著,拔节后40~100 cm土层根系显著增多.越冬期高密度条件下匀播冬小麦根量较大;拔节至抽穗期根系生长最旺盛,各处理由高到低依次为156万株/hm2处理、204万株/hm2处理、123万株/hm2处理、278万株/hm2处理、400万株/hm2处理,匀播条件下新冬22号根系集中分布在0~60 cm土层.  相似文献   
4.
新农菜豆1号密度试验初报   总被引:3,自引:0,他引:3  
研究了新农菜豆1号在3种不同密度下,农艺性状、干物质积累、叶面积指数等的变化规律。研究结果表明:随着密度的增加,株高和底荚高度增加,茎粗、节数、分枝数、分枝总长降低,单株荚数、单株粒数、单株粒重降低,而百粒重与密度关系不显著。以密度21万株·hm-2鲜荚产量最高,为12440kg·hm-2,百粒鲜重64.7g。  相似文献   
5.
在冬小麦季设置秸秆不还田翻耕(CT)、秸秆还田翻耕(CTS)、秸秆还田旋耕(RTS)和免耕秸秆覆盖(NTS)4种处理,研究耕作方式对华北小麦-玉米两熟区作物周年产量和水分利用的影响。结果表明:耕作方式对当季冬小麦产量和水分利用影响显著,对夏玉米产量和水分利用影响不大,但秸秆还田提高了夏玉米产量。RTS、CTS、CT 3个处理小麦季产量差异不显著,而NTS由于有效穗数不足,产量显著低于其他处理;与CT相比,NTS周年产量平均减产5.13%,RTS增产2.69%,CTS增产2.33%。耕作方式对当季小麦土壤水分含量影响大,而对后茬夏玉米土壤水分含量的影响较小。NTS提高了小麦季土壤水分含量,增加了土壤储水量,与CT相比,0~60 cm土壤储水量2010年和2011年分别增加39.07 mm和26.65 mm。从耗水构成来看,土壤水在冬小麦耗水中所占比例最大,其次为灌水和降水;而夏玉米耗水以降水为主,且降水中有一部分转化为土壤水储存起来。NTS提高了冬小麦季土壤储水量,降低了土壤水分的消耗,冬小麦季耗水最少。与CT相比,NTS小麦季平均节水22.40 mm,周年耗水量也以NTS最少;但NTS冬小麦产量降低导致其小麦季和周年水分利用效率均最低。从作物周年产量和水分利用的角度来看,如何提高免耕秸秆覆盖小麦季产量,进而提高周年产量,发挥其节水优势,是该耕作模式在华北地区冬小麦?夏玉米两熟区推广应用亟需解决的关键问题。  相似文献   
6.
不同群体条件下奶花芸豆的生长及产量研究   总被引:3,自引:0,他引:3  
研究了奶花芸豆4种不同群体条件下,叶绿素含量、叶面积指数、单位面积干物质积累及产量的变化规律.研究结果表明:随着密度增大,单位叶面积叶绿素含量降低;叶面积指数增大,但密度过大则叶面积指数高值期持续时间较短;干物质积累量和产量在一定密度范围内随密度的增加而增加,但密度过大,干物质积累量和产量反而下降.  相似文献   
7.
施氮对高产春大豆氮素吸收分配的影响   总被引:7,自引:5,他引:7  
以高油品种黑农41为材料研究了高产条件下,氮肥对春大豆植株氮素吸收的影响.结果表明,始花期施氮肥促进氮素吸收,提高氮素的积累速率,推迟氮素积累高峰期,氮素积累总量增加,促进氮素向子粒分配,提高子粒产量和蛋白质含量.在施氮量为0-90kg/hm2范围内,每生产100kg子粒,氮、磷(P2O5)、钾(K2O)吸收量略增,三者之间的比率稳定,约为1:0.28:0.69,再增加氮肥施用量,钾的吸收比率明显下降.  相似文献   
8.
[目的]研究不同根瘤菌接种方式对复播大豆生长及结瘤效果.[方法]以前期分离、鉴定、纯化的3株根瘤菌菌株为材料,对新疆南疆地区复播大豆新大豆8号进行种肥、随水滴施、拌种等接种方式试验,测定其根瘤数、根瘤干重、植株性状、产量及其构成因素的变化.[结果]接种根瘤菌均能促进大豆根系结瘤和生长发育,根瘤菌SN7-2促进效果最明显...  相似文献   
9.
耕种方式对冬小麦籽粒灌浆特性及产量的影   总被引:1,自引:0,他引:1  
通过大田定位试验,研究了免耕条播、深松条播、旋耕条播、机械撒播等4种耕种方式下冬小麦强势粒灌浆特性,用Logistic方程拟合籽粒灌浆进程,对籽粒灌浆参数进行了分析.试验结果表明,方程拟合决定系数均在0.9942以上,Logistic方程能真实反映籽粒灌浆进程.旋耕条播、机械撒播耕作深度相同,各阶段灌浆速率较一致,渐增期、快增期、缓增期均低于深松条播和免耕条播,但二者株行配置方式不同,机械撒播渐增期略高于旋耕条播,快增期、缓增期均低于旋耕条播,但3个阶段灌浆持续期分别比旋耕条播高0.05、0.57 d和0.71d.耕作、种植方式主要通过影响籽粒灌浆速率和灌浆持续天数影响粒重,耕作方式对灌浆速率影响大,株行配置对灌浆持续期影响明显.耕种方式对强势粒、弱势粒灌浆特性影响效应不同,机械撒播强势粒渐增期灌浆速率高达0.95 mg·d-1·粒-1,持续时间仅为9.95 d,快增期、缓增期灌浆速率仅为2.11 mg·d-1·粒-1和0.59 mg·d-1·粒-1,但持续时间长达12.27 d和15.27 d,强势粒千粒重高达41.65 g,虽然强、弱势粒综合千粒重仅为40.2g,但该模式有效穗数高,经济产量高达7 599.0 kg·hm-2.  相似文献   
10.
2020—2021年通过大田试验,以红枣单作(CK)和苜蓿单作(AM)为对照,设置3种间距的红枣间作苜蓿种植模式:M1(间距0.5 m)、M2(间距1 m)、M3(间距1.45 m),研究了不同间距配置下红枣间作苜蓿土壤团聚体有机碳、全氮及产量的变化特征。结果表明,土壤机械稳定性团聚体以大团聚体为优势团聚体,主要集中在0.25~1 mm粒级,变幅为23.26%~28.01%;较之CK处理,M1、M2、M3间作处理0~60 cm土层≥0.25 mm土壤机械团聚体含量和水稳定性团聚体含量分别提高了12.84%、16.46%、13.75%和42.57%、43.50%、32.13%。间作处理显著提高了0~60 cm土层土壤机械稳定性团聚体和水稳定性团聚体平均质量直径,分别比CK提高了19.53%、23.58%、14.29%和21.31%、21.50%、10.80%。不同种植模式下有机碳、全氮含量大小排序分别为M1>M2>AM>M3>CK、M2>M1>AM>M3>CK。不同粒级团聚体中<0.25 mm微团聚体有机碳、全氮含量最高,1~2 mm粒级有机碳、全氮含量最低;M1、M2处理显著提高了0~60 cm土层土壤有机碳、全氮含量。AM处理鲜草产量最高并显著高于其他处理,各间作处理中M2产量最高,M3产量最低;间作苜蓿对红枣产量无影响。间距1 m的红枣间作苜蓿处理优化了土壤结构及养分,且保证了作物产量之间的平衡,为最适的苜蓿间距配置模式。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号