首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  完全免费   4篇
  水产渔业   13篇
  2020年   1篇
  2018年   1篇
  2015年   2篇
  2013年   1篇
  2011年   1篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2003年   1篇
  2001年   1篇
  1993年   1篇
排序方式: 共有13条查询结果,搜索用时 62 毫秒
1.
ABSTRACT:   The vertical distribution of jack mackerel Trachurus japonicus larvae was described based on discrete depth sampling using a MTD net system from the surface down to 100 m depth at 13 stations in the southern East China Sea between 27 February and 10 March 2002. Of the 20 782 fish larvae collected, T. japonicus larvae were most abundant, accounting for 37.0% of the total catch. The average abundance of the larvae was 419.0 individuals/10 m2, with the average (± standard deviation [SD]) body length of 2.6 ± 0.3 mm (range 1.8–7.5 mm). The larvae were concentrated in the mixed layer, with peak densities in the 10–30 m layer. The average (±SD) weighted mean depth was 21.5 ± 7.8 m. There was no evidence of either diel or ontogenetic vertical migration for the early larvae of <5 mm. More than 90% of the T. japonicus larvae were collected in the water temperature ranging from 21 to 23°C. Vertical profiles of the larval densities and chlorophyll a coincided with each other, which might reflect the abundance of their main prey organisms, copepod nauplii and copepodites, since copepod production is known to be closely related with the chlorophyll a concentration.  相似文献
2.
3.
4.
5.
6.
水温对水生态系统中的物理、化学和生物过程有着重要影响。为分析神农溪水温季节分布特征,也为弄清神农溪水华与水温等环境因子之间的关系,于2015年分季节进行4次采样,并对水温、水动力、Chl-a以及环境因子等进行原位监测。研究发现神农溪不同季节存在不同形式的异重流,并影响着库湾水温垂向分布格局。春季水温分层开始发育,夏季水温受中上层异重流影响水温垂向分布呈现“双斜温”,秋、冬季主要受对流作用以及异重流的影响,上层水温呈等温状态。利用SPSS分析Chl-a与水华暴发因素之间的相关性发现,Chl-a与水温(R=0.752)、水体稳定系数(R=0.742)呈极显著正相关,而与混合层深度(R=-0.584)和溶解性氮(R=-0.609)、磷(R=-0.408)等营养盐呈极显著负相关。通过分析发现水温虽然与Chl-a呈显著的正相关关系,但并不能很好地解释神农溪水华暴发;神农溪藻类生长不受氮限制,但水华暴发消耗大量磷营养盐会对藻类继续增殖产生磷限制;春、夏季混合层深度骤减是神农溪水华暴发的主要原因。  相似文献
7.
Pacific saury (Cololabis saira) has a short life span of 2 years and tends to exhibit marked population fluctuations. To examine the importance of sea surface temperature (SST) and mixed layer depth (MLD) as oceanographic factors for interannual variability of saury recruitment in early life history, we analyzed the relationship between abundance index (survey CPUE (catch per unit of effort)) of age‐1 fish and the oceanographic factors in the spawning and nursery grounds of the previous year when they were born, for the period of 1979–2006, in the central and western North Pacific. Applying the mixture of two linear regression models, the variability in the survey CPUE was positively correlated with previous year's winter SST in the Kuroshio Recirculation region (KR) throughout the survey period except 1994–2002. In contrast, the survey CPUE was positively correlated with the previous year's spring MLD (a proxy of spring chlorophyll a (Chl‐a) concentration) in the Kuroshio‐Oyashio Transition and Kuroshio Extension (TKE) during 1994–2002. This period is characterized by unusually deep spring MLD during 1994–1997 and anomalous climate conditions during 1998–2002. We suggest that saury recruitment variability was generally driven by the winter SST in the KR (winter spawning/nursery ground), or by the spring Chl‐a concentration (a proxy of prey for saury larvae) in the TKE (spring spawning/nursery ground). These oceanographic factors could be potentially useful to predict abundance trends of age‐1 saury in the future if the conditions leading to the switch between SST and MLD as the key input variable are elucidated further.  相似文献
8.
Our examination of the neon flying squid (Ommastrephes bartramii) winter–spring cohort catch per unit effort (CPUE, an index of stock) revealed significant positive correlations with the interannual variations of observed chlorophyll‐a (Chl‐a) concentration and autumn–winter mixed layer depth (MLD) in the winter–spring feeding grounds of paralarvae and juveniles (130–170°E, 20–27°N). These correlations suggest the importance of integrated bottom‐up effects by the autumn–winter MLD for the neon flying squid stocks. However, the influence of autumn–winter MLD interannual variation in the forage availability for paralarvae and juveniles, i.e., particulate organic matter and zooplankton, has still been unclear. In this study, we use the lower trophic ecosystem model NEMURO, which uses the physical environmental data from the ocean reanalysis dataset obtained by the four‐dimensional variational (4DVAR) data assimilation method. The model‐based investigation enables us to clarify how the autumn–winter MLD controls the particulate organic matter and zooplankton abundance in the feeding grounds. Further, our investigation of the autumn–winter MLD interannual variation demonstrates that the stronger autumn wind in the feeding grounds develops a deeper mixed layer. Therefore, the deep mixed layer entrains nutrient‐rich water and enhances photosynthesis, which results in good feeding conditions for paralarvae and juveniles. Our results underline that the wind system interannual variation has critical roles on the winter–spring cohort of the neon flying squid stock.  相似文献
9.
Pop‐up archival tags (PAT) provide summary and high‐resolution time series data at predefined temporal intervals. The limited battery capabilities of PATs often restrict the transmission success and thus temporal coverage of both data products. While summary data are usually less affected by this problem, as a result of its lower size, it might be less informative. We here investigate the accuracy and feasibility of using temperature at depth summary data provided by PATs to describe encountered oceanographic conditions. Interpolated temperature at depth summary data was found to provide accurate estimates of three major thermal water column structure indicators: thermocline depth, stratification and ocean heat content. Such indicators are useful for the interpretation of the tagged animal's horizontal and vertical behaviour. The accuracy of these indicators was found to be particularly sensitive to the number of data points available in the first 100 m, which in turn depends on the vertical behaviour of the tagged animal. Based on our results, we recommend the use of temperature at depth summary data as opposed to temperature time series data for PAT studies; doing so during the tag programming will help to maximize the amount of transmitted time series data for other key data types such as light levels and depth.  相似文献
10.
Particle‐tracking experiments were performed to infer the distribution of larvae of the Japanese sardine (Sardinops melanostictus) and to detect effects of transport environment on sardine recruitment, using the output of a high‐resolution ocean general circulation model and observed data of sardine spawning grounds during 1978–2004. By the 60th day following spawning, approximately 50% of the larvae had been transported to the Kuroshio Extension (KE). Whereas the spawning period and grounds changed markedly in relation to the stock level, the proportion of larvae transported to the KE remained relatively constant and no significant correlations were found between sardine recruitment and the transport proportion. Instead, the recruitment was found to be correlated with physical parameters including the mixed layer depth and the sea surface temperature along several major transport trajectories of sardine larvae. The correlations were most significant for the trajectories in the region 0.5° south to 1° north of the Kuroshio axis (defined as the location of velocity maxima at each longitude) and for larvae spawned in February and March during the high stock period (1978–94), and for larvae spawned in March and April during the low stock period (1995–2004).  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号