首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  完全免费   1篇
  水产渔业   3篇
  2017年   1篇
  2009年   1篇
  2007年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Abstract –  We analysed stable carbon and nitrogen isotopic ratios of dissolved inorganic carbon (DIC), plants, detritus and fishes to estimate the relative importance of dominant production sources supporting food webs of four Venezuelan rivers with divergent geochemical and watershed characteristics. Based on samples taken during the dry season at each site, fishes from two nutrient-poor, blackwater rivers had significantly lower δ 13C values (mean = −31.4‰ and −32.9‰) than fishes from more productive clearwater and whitewater rivers (mean = −25.2‰ and −25.6‰ respectively). Low carbon isotopic ratios of fishes from blackwaters were likely influenced by low δ 13C of DIC assimilated by aquatic primary producers. Although floodplains of three savanna rivers supported high biomass of C4 grasses, relatively little carbon from this source appeared to be assimilated by fishes. Most fishes in each system assimilated carbon derived mostly from a combination of microalgae and C3 macrophytes, two sources with broadly overlapping carbon isotopic signatures. Even with this broad overlap, several benthivorous grazers from blackwater and whitewater rivers had isotopic values that aligned more closely with algae. We conclude that comparative stable isotopic studies of river biota need to account for watershed geochemistry that influences the isotopic composition of basal production sources. Moreover, isotopic differences between river basins can provide a basis for discriminating spatial and temporal variation in the trophic ecology of fishes that migrate between watersheds having distinct geochemical characteristics.  相似文献
2.
Biodeposits from farmed mussels severely influence the biogeochemistry of sediments by increasing the levels of organic matter (OM). Mitigation of such negative impacts is important for the development of sustainable aquaculture operations. As a step towards developing methods for remediation of coastal sediments affected by mussel farming, the effects of the polychaete, Hediste diversicolor was evaluated experimentally. In a series of field‐ and laboratory experiments we tested hypotheses about the effects of polychaetes on sediment oxygen consumption, nutrient fluxes and sulphide pools under different polychaete densities and sedimentation regimes. The experimental results support the idea that polychaetes can mitigate negative effects on the benthic environment beneath mussel farms. H. diversicolor oxidized the sediment and generally enhanced the oxygen consumption, and thus the decomposition of OM. The accumulation of pore water sulphides were reduced and fluxes of nutrients across the sediment‐water interface increased. Additional calculations suggest that the effects of polychaetes were mainly indirect and driven by increased microbial activity due to the borrowing activity of the polychaetes. Trends of increasing decomposition with increasing polychaete density suggest that the decomposition could be further enhanced by higher densities. Overall, we concluded that Hdiversicolor is a potentially strong candidate for remediation of mussel farm sediments. The results show that sediments inhabited by Hdiversicolor have high assimilative capacity of OM and oxygen conditions are significantly improved following the addition of polychaetes at naturally occurring densities. However, technological developments are needed in order to allow the approach to be used in practice.  相似文献
3.
  • 1. Increased inputs of nutrients to estuaries can lead to undesirable effects associated with eutrophication, including algal blooms, changes in species composition and bottom anoxia. Several estuaries and coastal areas around the UK have increased nitrogen (N) and phosphorus (P) concentrations, elevated concentrations of chlorophyll a and changes in algal community composition and abundance. This paper reviews the pressures that lead to high nutrient concentrations in estuaries and considers the likely effectiveness of current and proposed regulatory actions.
  • 2. The main sources of nutrients to estuaries are river runoff, sewage discharges, atmospheric inputs and possibly submarine groundwater discharges, although little is known about the latter. Significant reductions in N and P inputs have been realized following application of the EU's Urban Waste Water Treatment Directive. Atmospheric NOx and NHx emissions have also decreased and are expected to decrease further in the next decade as implementation of existing legislation continues, and new controls are introduced for activities such as shipping.
  • 3. Agricultural inputs reach estuaries principally through diffuse sources, either in surface water (and in some areas possibly groundwater) or, for N, via the atmosphere. Over 10 years ago the Nitrates Directive was introduced to tackle the problem of N discharges from agriculture but little change in N loads to estuaries has been recorded.
  • 4. To meet the aims of the EU Water Framework Directive, for at least ‘good’ ecological status, more rigorous application and implementation of the Nitrates Directive, together with changes in the Common Agriculture Policy and farming practice are likely to be needed. Even then, the slow response of the natural environment to change and the inherent variability of estuaries means that their responses may not be as predicted. Research is needed into the relationship between policy drivers and environmental responses to ensure actions taken will achieve the planned results.
Copyright © 2008 John Wiley & Sons, Ltd.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号