首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
农作物   3篇
水产渔业   2篇
  2021年   1篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2011年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
Certain photosynthetic marine organisms have evolved mechanisms to counteract UV-radiation by synthesizing UV-absorbing compounds, such as mycosporine-like amino acids (MAAs). In this study, MAAs were separated from the extracts of marine green alga Chlamydomonas hedleyi using HPLC and were identified as porphyra-334, shinorine, and mycosporine-glycine (mycosporine-Gly), based on their retention times and maximum absorption wavelengths. Furthermore, their structures were confirmed by triple quadrupole MS/MS. Their roles as UV-absorbing compounds were investigated in the human fibroblast cell line HaCaT by analyzing the expression levels of genes associated with antioxidant activity, inflammation, and skin aging in response to UV irradiation. The mycosporine-Gly extract, but not the other MAAs, had strong antioxidant activity in the 2,2-diphenyl-1-picryhydrazyl (DPPH) assay. Furthermore, treatment with mycosporine-Gly resulted in a significant decrease in COX-2 mRNA levels, which are typically increased in response to inflammation in the skin, in a concentration-dependent manner. Additionally, in the presence of MAAs, the UV-suppressed genes, procollagen C proteinase enhancer (PCOLCE) and elastin, which are related to skin aging, had increased expression levels equal to those in UV-mock treated cells. Interestingly, the increased expression of involucrin after UV exposure was suppressed by treatment with the MAAs mycosporine-Gly and shinorine, but not porphyra-334. This is the first report investigating the biological activities of microalgae-derived MAAs in human cells.  相似文献   
2.
Mycosporine-like amino acids (MAAs) are secondary metabolites found in diverse marine, freshwater, and terrestrial organisms. Evidence suggests that MAAs have several beneficial effects on skin homeostasis such as protection against UV radiation and reactive oxygen species (ROS). In addition, MAAs are also involved in the modulation of skin fibroblasts proliferation. However, the regulatory function of MAAs on wound repair in human skin is not yet clearly elucidated. To investigate the roles of MAAs on the wound healing process in human keratinocytes, three MAAs, Shinorine (SH), Mycosporine-glycine (M-Gly), and Porphyra (P334) were purified from Chlamydomonas hedlyei and Porphyra yezoensis. We found that SH, M-Gly, and P334 have significant effects on the wound healing process in human keratinocytes and these effects were mediated by activation of focal adhesion kinases (FAK), extracellular signal-regulated kinases (ERK), and c-Jun N-terminal kinases (JNK). These results suggest that MAAs accelerate wound repair by activating the FAK-MAPK signaling pathways. This study also indicates that MAAs can act as a new wound healing agent and further suggests that MAAs might be a novel biomaterial for wound healing therapies.  相似文献   
3.
In the last 10 years, a great number of publications (both regular papers and reviews) have been published on the interesting molecules—mycosporine-like amino acids (MAAs). Despite significant advances in the research of MAAs, current overviews in the recent publications involving MAA research still need reporting. The aim of this Special Issue is to join, as an interdisciplinary approach, the photochemical and photobiological aspects, with emphasis on new natural resources to obtain both algae and zooplankton MAAs, advances in methodology of extraction and chemical identification of new MAAs. Finally, this Special Issue reviews the bioactivities of MAAs including UVR screen, antioxidant, immunostimulant, growth factor, DNA protection, inhibition of collagenase, elastase and hyaluronidase, and anti-photoaging, among others, and their potential use as nutracosmeceutic molecules (i.e., oral and topic photoprotector).  相似文献   
4.
通过生物化学和对比分析的方法,研究了短期增强UV-B辐射对钝顶螺旋藻(Spirulina platensis)794光合色素、丙二醛(MDA)、类菌孢素氨基酸(MAAs)以及脯氨酸含量的影响。研究结果显示,与未经过UV-B辐射处理的藻细胞相比,增强的UV-B(240μW/cm2)辐射可导致藻细胞叶绿素a和类胡萝卜素以及藻胆蛋白含量下降,以及MDA含量显著变化(P<0.05),表明螺旋藻对UV-B辐射敏感,UV-B辐射对藻细胞光合色素具有抑制和破坏作用,对螺旋藻的膜系统也产生重要影响。而UV-B辐射可导致MAAs含量增加,脯氨酸含量随辐射时间的延长而提高,说明增强UV-B辐照能诱导藻细胞屏蔽色素合成以及抗逆物质脯氨酸的累积,这可能是螺旋藻对UV-B胁迫所做出的适应性反应。  相似文献   
5.
为探究从坛紫菜中提取的类菌孢素氨基酸(MAAs)化合物对紫外线诱导产生的小鼠皮肤光老化作用的保护机制,实验采用乙醇热水提取法,提取坛紫菜中的MAAs,对其化合物的基本成分组成进行鉴定;通过观测小鼠造模部位皮肤的损伤情况,结合皮肤病理切片来评价坛紫菜MAAs对光老化小鼠的保护作用,并通过测定小鼠组织中超氧化物歧化酶(T-SOD)、谷胱甘肽过氧化物酶(GSH-Px)的活性及丙二醛(MDA)的含量和皮肤组织中羟脯氨酸(Hyp)的含量,分析MAAs化合物对光老化皮肤的保护机制。结果显示,从坛紫菜中提取的类菌孢素氨基酸类化合物主要组分为Porphyra-334和Shinorine;紫菜MAAs可有效改善因紫外线诱导而产生的皮肤光老化的发生;与模型组小鼠相比,外涂给药组小鼠皮肤组织中SOD、GSH-Px的活性及Hyp的含量显著性提高,MDA的含量显著降低;而灌胃给药组与空白对照组小鼠相比体内抗氧化酶活性作用水平变化不明显。研究表明,紫菜MAAs对紫外线诱导的皮肤光老化具有保护作用。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号