首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   328篇
  免费   38篇
  国内免费   36篇
林业   10篇
农学   27篇
基础科学   110篇
  55篇
综合类   133篇
农作物   3篇
水产渔业   45篇
畜牧兽医   8篇
园艺   7篇
植物保护   4篇
  2023年   3篇
  2022年   5篇
  2021年   10篇
  2020年   14篇
  2019年   18篇
  2018年   7篇
  2017年   11篇
  2016年   18篇
  2015年   10篇
  2014年   31篇
  2013年   19篇
  2012年   28篇
  2011年   40篇
  2010年   19篇
  2009年   12篇
  2008年   20篇
  2007年   19篇
  2006年   23篇
  2005年   11篇
  2004年   15篇
  2003年   14篇
  2002年   11篇
  2001年   5篇
  2000年   6篇
  1999年   1篇
  1998年   2篇
  1997年   4篇
  1996年   3篇
  1995年   5篇
  1994年   1篇
  1993年   4篇
  1992年   3篇
  1991年   5篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
排序方式: 共有402条查询结果,搜索用时 15 毫秒
1.
三相分离器是厌氧反应器的核心部件,三相分离器研究的重点和难点在于揭示气液固三相分离过程。文章通过建立冷模实验系统探究了三相分离器气体分离收集的过程,并考察了曝气量、进水量对气相带水量、气相带水能力、颗粒流失等三相分离器性能的影响。研究结果表明:气相在三角堰内完成分离收集然后汇聚到集气室内,最后夹带一定量的液体由提升管排出;随着曝气量的增加,气泡逃逸量有所增加,颗粒流失加大,气相带水量不断增加,但是气相带水能力先增加后降低;进水量的变化不影响三相分离器的运行效果。研究结果为三相分离器的设计及稳定运行提供了理论基础。  相似文献   
2.
The objective of this study was to evaluate different hatchery systems used for the larviculture of the Macrobrachium carcinus based on survival, larval development and production of post-larvae. The experimental culture was carried out in three phases designated as Phase I (Zoea VI to VIII – ZVI – VIII), Phase II (Zoea VIII to X – ZVIII – X), and Phase III (Zoea X to PL – ZX – PL), with densities of 30, 27.5 and 25 larvae / L, respectively. The M. carcinus larvae (ZVI) were reared in four culture systems, two being open (Greenwater – GW and Clearwater – CW) and two being closed (Biofloc – BFT and Bio-filter – RAS), distributed in twelve 10 L plastic containers, filled with 20 ppt brackish water, equipped with constant aeration, and water circulated by air lift and heated with thermostat (∼30 °C). The GW treatment was maintained with Chlorophyceae algae in the density of 3–5 × 105 cells/mL. In the CW, the water was previously filtered through a 5 μm mesh screen, sterilized with 10 ppm active chlorine and, dechlorinated with vitamin C and subjected to aeration for 24 h. The BFT received water rich in bioflocs that was matured prior to the experiment and used molasses as a source of organic carbon. In the RAS, the culture water circulated through an external “Dry-Wet” biological filter. The feeding was carried out ad libitum four times daily, alternating a wet diet formula with a commercial diet, which was supplemented with newly hatched Artemia nauplii at a rate of 40–50 per larvae/day. Temperature, dissolved oxygen and pH were monitored daily and the salinity two times per week. Total ammonia, nitrite, nitrate, orthophosphate, alkalinity, total suspended solids, chlorophyll-a, COD and BOD were also analyzed. The best water quality (P < 0.05) was obtained in the RAS, with 0.49 (±0.38), 0.23 (±0.22), and 9.0 (±1.5) mg/L of TAN, NO2-N and NO3-N, respectively. In the GW, the nitrogen species showed high fluctuations and higher concentrations at 2.32 (±1.68), 3.53 (±3.53) and 18.2 (±12.9) mg / L of TAN, NO2-N and NO3-N, respectively. Considering the three phases (ZVI – PL), the overall survival was 0.03, 1.97, 2.23 and 17.32 % for the BFT, CW, GW and RAS, respectively. When considering the phases separately, the survival in Phase I (ZVI – VIII) was highest in the GW system at 58.7 % while the RAS was the highest in Phases II (ZVIII – X) and III (ZX – PL) at 70.6 % and 60.3 %, respectively. The BFT showed 8.4 (±3.5) PL/L, which was higher (P < 0.05) than that obtained in the RAS (2.8 ± 1.2 PL/L) and the GW (1.3 ± 1.1 PL/L) and similar to that obtained in the CW (5.6 ± 2.0 PL/L). Thus, the larviculture for the M. carcinus may be optimized by adopting a multiphase management strategy, which the intermediate larval stages (ZVI – IX) are reared in the GW system and the final stages (ZX – PL) are reared in the BFT system.  相似文献   
3.
Indoor, intensive, nursery-based recirculating aquaculture systems (RAS) can provide high-quality juvenile shrimp for indoor or pond-based production systems in a biosecure manner. However, it is unclear what type of RAS is most appropriate for indoor shrimp nurseries. This study compared three types of RAS nurseries: biofloc (BF), clear-water (CW), and hybrid (HY). Each treatment included four, randomly assigned 160 L (0.35-m2) tanks that were stocked with 3000 post-larvae shrimp m−3. The post-larvae (PL10) shrimp had an initial average weight of 7 ± 0.0 mg and were grown for 48 days. The BF tanks included external settling chambers as the only filtration mechanism. The CW tanks had settling chambers, foam fractionators, and external biofilters to fully clarify the water and process nitrogenous waste. Hybrid tanks included settling chambers, and external biofilters to maintain some suspended solids along with external biofiltration. Overall, the CW treatment had significantly higher dissolved oxygen (DO) and pH levels than the BF and HY systems. The HY treatment had significantly higher DO than the BF treatment. Nitrite concentration was significantly higher in the HY treatment than the CW treatment. Turbidity in the BF treatment was significantly higher than the other treatments. On the final sample date, the BF treatment had significantly higher nitrite and nitrate concentrations than the other treatments. Differences between treatments in terms of shrimp survival, mean harvest weight, specific growth rate, and feed conversion ratio were not significant. The final weight of the shrimp at 48 days for the BF, CW, and HY were 670 mg, 640 mg, and 590 mg respectively. A stable isotope mixing model indicated that, in the BF treatment, 13% of the C and 34% of the N in harvested shrimp tissue may have originated from biofloc material, signifying some nutrient recycling. The nitrification process was more effective with the inclusion of an external biofilter. All three system types appear suitable for RAS shrimp nursery production although consideration should be given to water quality consistency and filtration costs.  相似文献   
4.
The use of artificial substrates in shrimp aquaculture may allow for production of shrimp at increased densities while providing a growth medium for microbes that assist with water quality processes and provide supplemental nutrition for shrimp. Greenhouse-based shrimp production systems can extend the shrimp production season in temperate climates while conserving water and energy. For this study, we evaluated the effects of providing extra substrate and shrimp density on water quality and shrimp production in greenhouse-based biofloc systems. Four 11-m3, wood framed, and rubber-lined tanks were constructed in each of four high tunnel greenhouses (for a total of 16 tanks). Four treatments were evaluated: high-density stocking with substrate (HDS), high-density stocking with no substrate (HDNS), low-density stocking with substrate (LDS), and low-density stocking with no substrate (LDNS). Each treatment was randomly assigned to one tank in each tunnel to block for location. No artificial heat was used, and shrimp were grown for 120 days. High-density systems were stocked at 200 shrimp/m³ while low-density tanks had 100 shrimp/m³. Adding substrate increased total in-tank surface area by 13.4%. The addition of substrate had no significant effect on any shrimp production or standard water quality parameters. Shrimp had significantly greater final weight, faster growth rate, and lower feed conversion rate in low-density treatments (P ≤ 0.02 for all). Total shrimp biomass production was significantly higher in high-density treatments (HD: 4.0 kg/m3; LD: 2.3 kg/m3; P < 0.05). There were no significant differences in survival between densities (HD: 91.3%; LD: 94.5%; P = 0.43). Peak and overall mean nitrite levels were significantly higher in high-density treatments compared to low-density treatments. Dissolved oxygen levels and pH over the course of the study were significantly lower in high-density treatments, likely due to increased respiration rates in the water column. This project shows the feasibility of shrimp production in temperate climates with no artificial heat using high tunnel greenhouses, few impacts of added substrate on shrimp production, and increased shrimp density can result in much larger harvests with few negative impacts on production metrics.  相似文献   
5.
6.
核主泵小流量工况下不稳定流动数值模拟   总被引:1,自引:0,他引:1  
为研究小流量工况下核主泵驼峰现象,通过三维软件Pro/E对核主泵内部流道进行三维造型,基于雷诺时均N-S方程和k-ε湍流模型两方程及SIMPLEC算法,应用计算流体力学软件CFX对核主泵小流量工况进行了定常数值模拟和分析.结果表明:采用定常数值模拟,可以阐明小流量区域的不稳定驼峰现象.泵壳出口位于泵壳的中心,使得沿叶轮旋转方向的主流与出口处的液体发生摩擦和碰撞,造成能量损失,导致内部流场分布不均匀.核主泵对称性结构、叶轮叶片进口和出口复杂旋涡、导叶内复杂的回流以及泵的旋转失速与不稳定驼峰的形成都有密切的联系.核主泵在小流量下运行时,出现不稳定流动,严重时会引起泵的振动.  相似文献   
7.
陈婕  田兴  兰风岗  尹文娟  马三剑 《安徽农业科学》2014,(33):11829-11831,11865
[目的]探索处理蔬菜垃圾的厌氧发酵新方法.[方法]通过IC厌氧反应器处理白菜叶子榨汁废水,测定进出水COD、pH等指标以及反应器的产沼气效率.[结果] IC反应器稳定运行后,COD去除率达到85%左右,负荷可以达到15.9 kg COD/(m3·d),其中每kgCOD可以产生约0.5 m3的沼气.[结论]IC厌氧反应器处理蔬菜垃圾产生了能源,有效解决了蔬菜垃圾的处理,同时简化了处理设施.  相似文献   
8.
A dense microbial community develops in the water column of intensive, minimal-exchange production systems and is responsible for nutrient cycling. A portion of the microbial community is associated with biofloc particles, and some control over the concentration of these particles has been shown to provide production benefits. To help refine the required degree of control, this study evaluated the effects of two levels of biofloc management on water quality and shrimp (Litopenaeus vannamei) production in commercial-scale culture systems. Eight, 50 m3 raceways were randomly assigned to one of two treatments: T-LS (treatment-low solids) and T-HS (treatment-high solids), each with four replicate raceways. Settling chambers adjacent to the T-LS raceways had a volume of 1700 L with a flow rate of 20 L min−1. The T-HS raceways had 760 L settling chambers with a flow rate of 10 L min−1. Raceways were stocked with 250 shrimp m−3, with a mean individual weight of 0.72 g, and shrimp were grown for thirteen weeks. Raceways in the T-LS treatment had significantly reduced total suspended solids, volatile suspended solids, and turbidity compared to the T-HS treatment (P ≤ 0.003). The T-LS raceways also had significantly lower nitrite and nitrate concentrations, and the T-HS raceways had significantly lower ammonia and phosphate concentrations (P ≤ 0.021). With the exception of nitrate, there were no significant differences between the change in concentration of water quality parameters entering and exiting the settling chambers in the T-LS versus the T-HS treatment. Nitrate never accumulated appreciably in the T-LS raceways, possibly due to denitrification in the settling chambers, bacterial substrate limitations in the raceways, or algal nitrate assimilation. However, in the T-HS raceways nitrate did accumulate. The T-HS settling chambers returned a significantly lower nitrate concentration and significantly greater alkalinity concentration than what entered them (P ≤ 0.005), indicating that denitrification may have occurred in those chambers. There were no significant differences in shrimp survival, feed conversion ratio, or final biomass between the two treatments. However, shrimp in the T-LS treatment grew at a significantly greater rate (1.7 g wk−1 vs. 1.3 g wk−1) and reached a significantly greater final weight (22.1 g vs. 17.8 g) than shrimp in the T-HS treatment (P ≤ 0.020). The results of this study demonstrate engineering and management decisions that can have important implications for both water quality and shrimp production in intensive, minimal-exchange culture systems.  相似文献   
9.
选择一种新型高效反应器系统对奶牛养殖场废水进行处理试验研究,这种反应器系统主要包括两级组合生物巢厌氧反应器和砂式沼液处理池。试验结果表明,该系统处理奶牛养殖废水速度快,两级组合生物巢厌氧反应器水力停留时间(HRT)仅为15h,处理效率高,砂式沼液处理池结构简单,对生物巢厌氧反应器出水处理效果好。该新型高效反应器组合系统对化学需氧量(COD)、生化需氧量(BOD)、氨氮(NH3-N)和总固体悬浮物(TSS)的平均去除率分别为97.6%、98.2%、81.3%和98.1%,出水体积质量平均值分别为89.0、27.1、15.7mg·L^-1和64.9mg·L^-1,满足国家二级排放标准。  相似文献   
10.
将顶盖能透紫外光的盒子内部分隔成多个互连廊道,廊道侧壁和底部装填以采用溶胶-凝胶法制备的TiO2/玻璃纤维网高活性催化剂,研制成结构简单新型固定膜双层薄板光催化反应器。对低浓度苯酚的研究结果表明,该装置具有良好的传质效果,当循环流量大于24mL/s时,即可有效克服传质限制作用。苯酚的降解呈表观一级反应,表观动力学常数随着初始浓度的增加而变小,随着光强的增强而增大。固定膜光催化反应速率可以达到1g/L TiO2悬浆催化体系的1/2。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号