首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6987篇
  免费   312篇
  国内免费   188篇
林业   645篇
农学   450篇
基础科学   176篇
  214篇
综合类   3253篇
农作物   284篇
水产渔业   442篇
畜牧兽医   747篇
园艺   1023篇
植物保护   253篇
  2024年   6篇
  2023年   128篇
  2022年   126篇
  2021年   148篇
  2020年   178篇
  2019年   130篇
  2018年   85篇
  2017年   175篇
  2016年   206篇
  2015年   249篇
  2014年   404篇
  2013年   306篇
  2012年   471篇
  2011年   436篇
  2010年   398篇
  2009年   429篇
  2008年   506篇
  2007年   428篇
  2006年   315篇
  2005年   425篇
  2004年   227篇
  2003年   212篇
  2002年   190篇
  2001年   202篇
  2000年   140篇
  1999年   98篇
  1998年   92篇
  1997年   82篇
  1996年   103篇
  1995年   86篇
  1994年   96篇
  1993年   84篇
  1992年   71篇
  1991年   75篇
  1990年   58篇
  1989年   44篇
  1988年   11篇
  1987年   15篇
  1986年   12篇
  1985年   5篇
  1984年   3篇
  1983年   6篇
  1982年   8篇
  1980年   3篇
  1979年   8篇
  1977年   1篇
  1973年   1篇
  1965年   2篇
  1958年   1篇
  1957年   2篇
排序方式: 共有7487条查询结果,搜索用时 156 毫秒
1.
长链多不饱和脂肪酸(LC PUFAs)在母猪营养中的作用经常被人们研究,因为猪场的盈利能力主要取决于母猪的繁殖性能。根据以往的研究结果,母猪妊娠期喂食ω-3 LC PUFAs可以减少前列腺素的合成,提高胚胎存活率和仔猪初生重;哺乳期饲喂ω-3 LC PUFAs可以提高乳汁中EPA和DHA含量,改善哺乳仔猪肠道健康和断奶重。文章论述了LC PUFAs(主要是ω-3)对现代高产母猪繁殖性能的影响,为在生产实践中合理添加应用LC PUFAs,提高母猪生产性能提供理论参考。  相似文献   
2.
[目的]长链非编码RNAs(long noncoding RNAs,lncRNAs)近年来受到了越来越多的关注,被认为是重要生物学过程中潜在的关键调控因子,目前已经在斑马鱼胚胎和组织中发现了大量的lncRNAs。然而,这些在成体组织中已发现并鉴定的有差异表达的lncRNAs在胚胎发育时期的时空表达谱仍不清楚,本文研究成体斑马鱼心脏中发现的3个lncRNAs在胚胎发育阶段的时空表达谱。[方法]首先对其编码潜能利用在线软件进行分析,并通过Ensemble、NCBI等网站对其与蛋白编码基因的关系进行分析,然后利用实时荧光定量PCR方法分析了lncRNAs TCONS_00028652、lnc_H001和lnc_H007在斑马鱼胚胎发育阶段以及不同组织的表达水平。为了进一步研究其在斑马鱼胚胎发育过程中表达的空间位置,采用全胚原位杂交技术进行检测。[结果](1)通过在线数据库对其在基因组上的位置与编码基因的关系分析发现,TCONS_00028652属于基因间长链非编码RNA,lnc_H001属于内含子型,而lnc_H007属于反义型长链非编码RNA;(2)通过实时荧光定量PCR检测发现它们在胚胎发育不同时期几乎都有表达,而且在成体组织中,不仅在心脏中有表达,在其它组织也有表达,其中TCONS_00028652在大脑和肝脏中的表达高于其它组织,lnc_H001在大脑中的表达高于其它组织,而lnc_H007则是在心脏中表达高于其它组织。[结论]3种lncRNAs不仅在斑马鱼心脏发育和修复中起作用,而且在其它器官发育和修复以及胚胎发育过程也发挥一定的作用。  相似文献   
3.
徐璐珊  陈乐阳  朱燕  刘培刚 《蚕桑通报》2021,52(3):27-29,52
台湾长果桑果个长、总糖量高、有机酸含量低,口感佳并含特别清香,深受广大消费者喜爱.为防止冻害,浙江种植台湾长果桑宜选择大棚种植,最好采用顶膜可完全打开的新型大棚;采果后剪伐时在枝条基部自然长出短小枝上方剪枝或留2 cm~3 cm小截枝,让短小枝或小截枝上长出的枝条变为结果枝,这种剪伐留条方式能显著提升每枝着果数、每芽着果数和降低落果率;可以实现单株产量12.66 kg、667 m2产量1405.52 kg的好成绩、经济效益高.  相似文献   
4.
通过小麦与长穗偃麦草远缘杂交创制附加系、代换系及易位系是小麦遗传改良中利用长穗偃麦草优良基因的重要途径。本研究将长穗偃麦草特异分子标记、染色体计数、基因组原位杂交(GISH)及非变性原位杂交(ND-FISH)等多种方法相结合,对硬粒小麦Langdon(AABB)与小偃麦8801(AABBEE)的杂交后代群体进行分子细胞学鉴定,创制出硬粒小麦-长穗偃麦草3E、6E染色体双体附加系Du-DA3E和Du-DA6E,硬粒小麦-长穗偃麦草1E(1B)染色体双体代换系Du-DS1E(1B)以及硬粒小麦-长穗偃麦草1AS-1EL染色体易位系Du-T1AS·1EL。创制的4个种质中长穗偃麦草染色体均能稳定遗传,这不仅增加了硬粒小麦-长穗偃麦草附加系和代换系的类型,还为后续利用长穂偃麦草优良基因改良小麦提供了特殊种质资源。  相似文献   
5.
为研究长蛸神经系统结构及神经调控机制,通过解剖学和石蜡组织切片技术对长蛸的脑部结构进行观察。结果显示,以食道为参照,根据所处位置将脑分为3部分:食道上神经团、食道下神经团以及位于食道上下神经团两侧的视叶区。食道上神经团包含垂直叶、上额叶、下额叶、前基底叶和后基底叶,食道下神经团包含腕叶、足叶、巨细胞叶、色素细胞叶、内脏叶、外套内脏叶和血管舒缩叶,视叶区包含视神经、视叶、视腺、嗅叶、脑脚叶和视神经束。采用石蜡组织切片、光镜和透射电镜技术对视腺进行显微和超显微结构观察,结果发现视腺外有一层结缔组织包裹,位于视神经束区上,与嗅叶和脑脚叶相邻;内部可观察到大量分泌细胞,细胞核较大,直径范围为4~8μm;分泌细胞含有丰富的粗面内质网、高尔基体及高尔基体分泌的分泌小泡与大泡。研究表明,长蛸视腺结构特征与曼氏无针乌贼和真蛸的高度相似。  相似文献   
6.
利用长雄野生稻(Oryza longistaminata)地下茎无性繁殖特性培育多年生稻(Perennial Rice, PR)已经成功并开始示范推广。多年生稻表现出一定的稻瘟病抗性,但其所具有的稻瘟病抗性来源尚不清楚。本研究通过田间病情调查、接种鉴定以及抗性基因检测等3种方法,对育成的多年生稻23(PR23)、云大24(PR24)、云大25(PR25)、云大101(PR101)、云大107(PR107)、父本长雄野生稻、母本RD23、(RD23/长雄野生稻)F1进行稻瘟病抗性评价。结果表明,父本长雄野生稻、(RD23/长雄野生稻)F1代及5个多年生稻品种(系)表现为高抗稻瘟病,而母本RD23表现高感稻瘟病,推测PR23、PR24、PR25、PR101和PR107这5个多年生稻品种(系)的稻瘟病抗性可能来源于长雄野生稻。其中,PR23、PR25稻瘟病抗性基因可能来自于长雄野生稻的Pi5基因和Pita-2位点,PR24稻瘟病抗性基因可能是来自长雄野生稻的Pita-2位点,PR107稻瘟病抗性基因可能来自于长雄野生稻的Pi5基因和Pish位点;PR101中未检测到本文中涉及到的基因或位点,推测其稻瘟病抗性来自长雄野生稻内未知的稻瘟病抗性基因。本研究结果将为多年生稻稻瘟病抗病育种、品种布局、植保技术制定等提供一定参考。  相似文献   
7.
整精米率是影响优质长粒籼稻发展的重要因素之一。为明确长江中下游稻区优质长粒籼稻适宜的播期、收获期和储存期,以3个长粒优质常规籼稻为材料,探讨了不同播期(5月10日、5月20日、5月25日、5月30日)、收获期(90%谷粒成熟、完全成熟、完全成熟后6 d)、储存期(10 d、40 d、60 d)对水稻整精米率的影响。结果表明,随着播期推迟,灌浆成熟期气温降低,全生育期明显缩短,整精米率、垩白粒率、垩白度总体上呈下降趋势,且日均温与整精米率、垩白度、垩白粒率呈极显著正相关关系;优质长粒籼稻在完全成熟收获,且储存40 d以后加工整精米率较高。  相似文献   
8.
报道了分布于我国西北地区的2种短柄大蚊(Nephrotoma aculeata Loew和Nephrotoma analis Schummel)雄虫精子泵及阳茎的构造,提供了各部分的插图,对各部分特征进行了描述,比较了形态学差异。  相似文献   
9.
通过对长叶马府油的生物学特性进行观察,以及栽培技术的试验研究,归纳了该树种在栽培各环节的技术要点。归纳了长叶马府油的生物学特性,总结了其种子采集、苗木培育、造林栽植、抚育管理及病虫害防治等栽培技术要点,并对该树种在沿海城市的绿化现状、抗风特性和用途进行了分析,提出了建议。为长叶马府油的人工栽培和园林绿化栽植提供科学依据和技术支持。  相似文献   
10.
《饲料博览》2021,(2):117-118
预计在进入21世纪中叶之前,人类人口将快速增长。研究报告称,到2050年,全球人口有可能超过97亿。为了满足不断增长的人口的营养和食物需求,食物的供应量也必须增加近25%~70%。在这种情况下,鱼类是最重要的食物来源之一,预计将为维持全球食品供应和人类营养做出巨大贡献。鱼是多种微量元素和营养素的宝贵来源,如必需的氨基酸、优质蛋白质、促进健康的3-3酸或LC-PUFA(n-3长链多不饱和脂肪酸)、必需的矿物质(如铁、碘、锌、磷、钙、硒)、维生素(A、B和D)等,鱼类已迅速成为全球各种饮食的核心成分。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号