首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  完全免费   10篇
  水产渔业   12篇
  2018年   1篇
  2017年   3篇
  2016年   3篇
  2015年   1篇
  2014年   2篇
  2013年   2篇
排序方式: 共有12条查询结果,搜索用时 46 毫秒
1.
以莱州湾西岸外来物种泥螺为例,运用YAAHP软件,采用层次分析法(AHP)对其生态安全风险进行了评估。以泥螺完整的生物入侵过程为依据,针对各阶段的关键特性,综合考虑外来物种的生物学、生活史特征、人为干扰影响因素、入侵地的生态系统状况等方面来选取评估指标,设计6个一级指标,30个二级指标,设定了“可以引种”、“引种具有一定风险”和“禁止引种”3个风险分级标准,构建了风险评价指标框架。通过对历史文献资料的分析、专家评分以及必要的调查实验等方法,对风险评估层次结构模型各项指标进行权重赋值。软件分析的结果显示,“具有一定风险”的权重值最高,为0.507 6,其次为“可以引种”,权重值为0.352 2,而“禁止引种”的权重值仅为0.140 2,因此,得出的最终方案为引种具有一定的风险。本研究对占权重值较高的传入风险、定殖风险和扩散风险3项指标进行了灵敏度分析,结果表明,3种指标的权重只影响评估结果的“具有一定风险”和“可以引种”的排列顺序,而不会影响“禁止引种”。因此建议,切勿盲目扩大泥螺的养殖规模,引入之后必须加强监督和管理。  相似文献
2.
根据2015年秋季(10月)和2016年冬季(1月)、春季(4月)、夏季(7月) 4个航次的调查研究,分析了獐子岛养殖海域表、底层水体中总悬浮颗粒物(TPM)、颗粒有机物(POM)和颗粒有机物比例(PCOM,%)的时空分布特征,结合POM与叶绿素a (Chl-a)及环境因子的相关性分析,探讨了悬浮颗粒物的影响因素及其与虾夷扇贝(Patinopecten yessoensis)底播养殖之间的潜在联系。结果显示,獐子岛海域TPM和POM的浓度变化范围分别为16.76~97.54、2.20~17.20 mg/L,年平均浓度分别为(31.65±9.58)、(6.97±2.08) mg/L。PCOM值的变化范围为8.69%~37.09%,平均值为(22.25±4.18)%。TPM浓度的季节变化趋势为秋季>春季>夏季>冬季,最大值出现在秋季表层。而POM和PCOM的最高值出现在夏季,冬季的值最低。POM与TPM的平面分布趋势相似,大部分海域的平面分布比较均匀;春、夏季POM的分布呈现中部略高、四周略低的特点,秋、冬季与之相反;夏季底层显著高于表层(P<0.01),其他季节表、底层无显著差异(P>0.05)。4个季节中,獐子岛海域的POM与Chl-a的含量呈极显著正相关关系(P<0.01);其中,春季底层和夏季表层的POM与Chl-a均存在极显著正相关关系(P<0.01)。另外,只有夏季表层POM与盐度之间存在显著负相关关系(P<0.05),说明夏季陆源输入对该海域的悬浮颗粒有机物有显著影响。  相似文献
3.
本研究旨在建立虾夷扇贝的动态能量收支(Dynamic Energy Budget,DEB)数值模型,为进一步构建北方海域虾夷扇贝养殖容量评估模型奠定基础.根据DEB理论,以水温和叶绿素浓度作为强制函数,基于现场及室内实验收集DEB模型参数,针对桑沟湾养殖环境和虾夷扇贝生长的数据,利用STELLA软件构建了虾夷扇贝的DEB模型,以长海县养殖环境和1龄、2龄、3龄虾夷扇贝生长的数据对模型进行验证.模型的模拟结果显示:(1)构建的DEB模型能够很好地模拟虾夷扇贝软体部干重的生长,反映了不同时间的能量分配情况;(2)在桑沟湾,6月1日至9月25日期间水温的限制性强于食物限制;在长海海域,9月15日至次年的6月20日期间食物的限制性强于水温的限制,由此推断,长海海域虾夷扇贝的养殖密度过大,可能超出了海域的养殖容量.另外,敏感性分析结果显示,能量分配系数k以及食物摄食能力参数?最大体表面积吸收率PAM、半饱和常数Xk,对虾夷扇贝生长模拟结果有着较大的影响,例如,PAM提高10%,生长模拟结果可增加13%.因此,这些敏感性较大的参数需要通过室内实验或者现场实验准确测定,谨慎赋值.  相似文献
4.
为研究季节变化和养殖活动对桑沟湾表层海水二氧化碳分压(pCO2)的影响,尤其是海带(Saccharina japon-ica)养殖活动对表层水pCO2的影响,本研究分别在海带收获前(2015年5月)、后(2015年8月)采用走航式二氧化碳分压仪对中国北方典型的贝藻筏式养殖海域——桑沟湾养殖区表层水pCO2及有关环境参数进行了大面调查,探讨了季节、养殖模式以及海带收获前、后表层水pCO2的变化规律及影响因素.调查结果显示:(1)春夏两季桑沟湾湾内表层海水中pCO2的平均值分别为(346.78±13.85) μatm(1 atm=101325 Pa,1μatm=10-6 atm)和(351.50±8.00) μatm;湾外自然海域pCO2值分别为(353.42±0.71)μatm和(358.05±2.01)μatm,均小于大气中pCO2.(2)pCO2的平面分布特性为:由湾底向湾外递减并在外海空白区升高,两个季节最低值都出现在海带养殖区,最高值都出现在贝类养殖区.(3)春季表层海水pCO2与水温相关性不显著(P<0.05),而与叶绿素a(Chl a)、溶解氧(DO)显著相关(P<0.05),反映了生命活动对pCO2影响较大;夏季,养殖海带已收获,表层海水pCO2与水温、溶解无机碳(DIC)、Chl a、DO显著相关(P<0.05).(4)桑沟湾养殖区以及外海自然海域表层水pCO2都低于大气中pCO2,表现为二氧化碳(CO2)的汇区.藻类养殖区表层水pCO2远低于自然海域,表现为CO2的强汇区;贝类养殖区表层水pCO2略高于自然海域,表现为CO2的弱汇区,贝藻混养区则介于二者之间.春季海带的光合作用是影响表层水pCO2的主要因素之一,养殖活动对海区表层水pCO2的影响使得桑沟湾pCO2表现出不同于自然海域的特性.夏季养殖活动减少导致物理因素的影响开始显现.  相似文献
5.
为研究不同养殖活动对海–气界面CO2交换通量(F)的影响,于2014年5月采用走航式CO2分压仪对中国北方典型的多营养层次混合养殖海域—桑沟湾养殖区的表层水CO2分压(pCO2)进行了大面调查,并通过数据计算桑沟湾海区的F值。在调查过程中,选择在网箱养殖区、贝类养殖区、藻类养殖区等区域内进行24 h定点连续观测。探讨了春季桑沟湾海–气界面CO2的交换通量及其主要影响因素。大面调查结果显示,桑沟湾内海水中pCO2总体变化趋势是由湾内向湾外递减,网箱养殖区海水中pCO2远远高于其他区域。在大面调查中,贝类、藻类、贝藻混养、网箱养殖区的F值分别为(–1.02±0.83)、(–15.40±1.28)、(–4.32±1.41)、8.14 mmol/(m2·d)。定点连续监测显示,藻类、贝类、网箱养殖区的pCO2 24 h平均值分别为(320±14)、(330±10)、(413±37) μatm。研究表明,光合作用是海–气界面CO2交换通量的主要影响因素之一,不同养殖区之间的海–气界面CO2交换通量差异显著。影响各养殖区海–气界面CO2交换通量日变化规律的影响因子与走航调查结果一致。养殖活动是影响海–气界面CO2交换通量的主导因素。  相似文献
6.
本研究以虾夷扇贝为实验生物,介绍了动态能量收支(dynamic energy budget,DEB)模型5个关键基本参数的测定及计算方法,分析了方法的利弊及注意事项,为贝类DEB模型参数的准确获取提供参考方法.采用壳长与软体部湿重回归法计算虾夷扇贝的形状系数δm;采用静水法测定不同温度条件下虾夷扇贝的呼吸耗氧率,计算阿伦纽斯温度TA参数;采用饥饿法测定、计算单位时间单位体积维持生命所需的能量[ρM]、形成单位体积结构物质所需的能量[EG]和单位体积最大储存能量[EM]3个参数.室内饥饿实验持续60 d,直至呼吸耗氧率及软体部干重基本保持恒定.结果显示,壳长(SL)与软体部湿重(WW)的回归关系式为WW=0.0118SL3.4511(R2=0.9365),根据公式V=(δδL)3,对软体部湿重的立方根和壳长进行线性回归,所得的斜率即为形状系数δm值(δm=0.32);获得不同规格的虾夷扇贝耗氧率与水温(热力学温度,K)倒数的线性回归关系,线性回归方程斜率的绝对值为阿伦纽斯温度TA,平均为(4160±767)K.饥饿实验结束时,软体部干重和呼吸耗氧率分别降低了56%和81%.虾夷扇贝的耗氧率稳定在0.17 mg/(ind·h),经计算获得[ρM]=25.9 J/(cm3·d);饥饿持续30天之后,虾夷扇贝软体部干重基本维持在(0.25±0.01)g,经计算获得[EG]=3160 J/cm3,[EM]=2030 J/cm3.动态DEB理论是基于能量代谢的物理、化学特性而建立的,体现了生物能量代谢的普遍性规律,能够反映摄食获取能量在不同发育生长阶段的能量分配情况.但是,DEB模型参数的测定及计算比较复杂.基本参数的准确获取将影响其他参数以及模型的准确性.本研究为虾夷扇贝DEB模型的构建奠定基础.  相似文献
7.
2014年4-6月在桑沟湾海区进行鼠尾藻(Sargassum thunbergii)海上筏式养殖实验,分析了鼠尾藻在桑沟湾的生长特性,调查了藻体上的附着生物.结果显示,(1)鼠尾藻在桑沟湾海域生长迅速,水温为10-17℃时特定生长率最高,可达6.10%/d;根据特定生长率与水温的关系,获得了鼠尾藻的最佳生长温度为14.9℃;(2)5月10日开始有生殖托形成,水温达到20.4℃时,鼠尾藻生殖托大量成熟,并有放散;(3)养殖期间,鼠尾藻最大长度达187.05 cm,均长可达112.31 cm;干湿比由0.147(4月)上升至0.189(6月);每公顷产量可达43.95 t(湿重),相当于干重为8.25 t;(4)藻体上有大型附着生物16种,主要优势种为尖嘴扁颌针鱼鱼卵、玻璃海鞘和海绵;附着生物的生物量随着水温升高而增加.研究表明,海区的附着生物对鼠尾藻的生长影响不大,在桑沟湾大规模养殖鼠尾藻是可行的.  相似文献
8.
采用静水法测定了温度和盐度对两种规格甲虫螺(Cantharus cecillei)耗氧率和排氨率的影响.结果显示,(1)温度、规格均对甲虫螺的耗氧率和排氨率有显著影响(P<0.05),但其二者的交互作用对甲虫螺的耗氧率和排氨率没有显著影响(P>0.05).当温度为12-24℃时,甲虫螺的耗氧率和排氨率随温度的升高而逐渐增加,温度为24℃时,达到最高值.之后随着温度的继续升高,各组耗氧率和排氨率均有明显的下降.在温度为12-28℃条件下,大规格组(A组)甲虫螺的单位体重耗氧率和排氨率均小于小规格组(B组).当温度为12-28℃时,甲虫螺的氧氮比值O/N比值范围在8.17-17.31之间.温度为20℃和24℃时,各实验组均有最大的O/N比值.温度升至28℃时,O/N比值明显下降.(2)盐度、规格对甲虫螺的耗氧率和排氨率有显著影响(P<0.05),但其二者的交互作用对甲虫螺的耗氧率和排氨率没有显著影响(P>0.05).当盐度为20-30时,两种规格甲虫螺的耗氧率和排氨率随盐度的升高而逐渐增加,盐度为30时,达到最高值.之后随着盐度的继续升高,各组耗氧率和排氨率均有明显的下降.在盐度为20-40条件下,大规格组(A组)甲虫螺的单位体重耗氧率和排氨率均小于小规格组(B组).当盐度为20-40时,甲虫螺的O/N比值范围在10.80-22.71之间.盐度为30时,各实验组均有最大的氧氮比值,盐度升至35和40时,氧氮比值明显下降.研究表明,甲虫螺生存的最适温度为24℃,最适盐度为30.以期为甲虫螺的人工繁殖以及贝螺混养技术提供科学的依据.  相似文献
9.
依据2014年5月和8月2个航次走航和定点连续调查资料,分析了桑沟湾水域叶绿素a的空间分布及海带养殖区叶绿素a(Chl.a)的昼夜变化特征,同时结合所调查的温度、盐度 、pH和营养盐等分布特征,分析了桑沟湾水域Chl.a浓度与理化因子的关系,探讨了海带收获前后Chl.a的变化及其影响因素。(1)走航调查的结果显示,桑沟湾夏季Chl.a浓度显著高于春季。桑沟湾春季表、底层总Chl.a浓度均值分别为(0.67±0.39)和(0.50±0.31)μg/L,表层Chl.a浓度高于底层,春季表层整体表现出自湾内向湾外逐渐降低的趋势;夏季表、底层总Chl.a浓度均值分别为(3.39±1.53)和(3.12±1.43)μg/L,表层Chl.a浓度高于底层。桑沟湾夏季表层Chl.a高值区出现在海带养殖区,低值区出现在贝类养殖区,夏季底层Chl.a高值区出现在贝类和海带养殖区,低值区出现在外海区。(2)定点连续监测结果显示,春季海带养殖区Chl.a浓度变化范围在0.24~0.95 μg/L,均值为(0.70±0.19)μg/L,昼夜波动较小。而夏季海带养殖区Chl.a浓度变化范围在2.01~4.66 μg/L,均值为(3.04±0.82)μg/L,昼夜波动较大。桑沟湾海带养殖区夏季Chl.a浓度显著高于春季。春季海带养殖区营养盐平均浓度及硅磷比、氮磷、硅氮比均显著低于夏季。(3)桑沟湾春季表层Chl.a浓度主要与温度、硅酸盐呈显著正相关,而夏季底层Chl.a浓度与盐度呈显著正相关。桑沟湾海带收获前后Chl.a的变化及分布受温度、硅酸盐、盐度、养殖环境状况和水文环境的共同影响,多元的贝藻养殖模式是影响Chl.a变化及分布的重要因素。  相似文献
10.
2012年夏季在爱莲湾,对采用碳酸氢铵防除养殖龙须菜(Gracilaria lemaneaformis)上的污损生物多棘麦秆虫(Caprella acanthogaster)的效果进行了研究,探讨了碳酸氢铵浓度及处理时间对多棘麦秆虫脱落率和死亡率的影响。实验的3个处理时间分别为5、10、15 min,碳酸氢铵浓度分别为0.5、0.6、0.7、0.8、0.9、1.0、2.0、3.0、4.0、5.0 g/L。结果表明,碳酸氢铵浓度、处理时间对多棘麦杆虫脱落率或死亡率均有显著影响(P0.05)。随着浓度的升高、处理时间的延长,多棘麦杆虫脱落率及死亡率都呈逐渐增加的趋势。多棘麦杆虫脱落率(D)或死亡率(M)与浓度(C)之间的关系均符合S型曲线模型lnD=a+(b/C)或lnM=c+(d/C)。在5、10、15 min时,碳酸氢铵对麦杆虫的致死浓度分别为7.36、6.17、3.68 g/L,对应的非离子氨浓度分别为37.72、21.32、14.25 mg/L。  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号