Aspects of intensive management practices such as high-yielding cultivars, narrow-row spacings and fungicide treatments could potentially increase cereal yields in regions with a short crop-growing season and occasionally dry and hot weather. A field experiment was carried out at McGill University, Canada for three years (1987 to 1989) to test the effects of triadimefon (1-[4-chlorophenoxy]-3,3-dimethyl-1-[1H-1,2,4-triazol-1-yl]-2-butanone, or Bayleton, a trade name) fungicide (0 vs. 140 g a.i. ha−1) and row spacing (10 vs. 20 cm) on the yield components, yield and other agronomic traits (spike emergence, days to maturity, leaf disease and plant height) of spring barley ( Hordeum vulgare L.) cv. Cadette, Laurier and Leger. A cultivar by row spacing interaction resulted in a 11 to 13.5 % increase in grain yield due to narrow rows for Laurier in two out of the three years and up to 16 % for Leger in one year. Over the three years grain yields were on average increased 6 to 12 % due to use of the narrower row spacing. Fungicide application to barley at the early heading stage effectively controlled leaf diseases without influence on yield components or grain yield. Our results indicate that some components of intensive management such as narrow row spacing can be applicable in regions with a short crop-growing season. 相似文献
Objective] The aim was to provide a theoretical basis for the rational configuration of ratio of row spacing to intrarow spacing (RS/lS) of double-cropping rice. [Methods] With early rice ‘Ganxin 203’ ... 相似文献
The low and unstable yields of rainfed lowland rice in Central Java can be attributed to drought, nutrient stress, pest infestation or a combination of these factors. Field experiments were conducted in six crop seasons from 1997 to 2000 at Jakenan Experiment Station to quantify the yield loss due to these factors. Experimental treatments—two water supply levels (well-watered, rainfed) in the main plots and five fertilizer levels (0-22-90, 120-0-90, 120-22-0, 120-22-90, 144-27-108 kg NPK ha−1) in the subplots—were laid out in a split-plot design with four replications. Crop, soil, and water parameters were recorded and pest infestations were assessed.
In all seasons, rice yield was significantly influenced by fertilizer treatments. Average yield reduction due to N omission was 42%, to K omission 33–36%, and to P omission 3–4%. Water by nutrient interactions did not affect rice yield and biomass production. In two of the three dry seasons, an average of 20% of the panicles were damaged by pests and estimated yield loss from pests was 56–59% in well-watered and well-fertilized treatments. In one out of six seasons, yields under rainfed conditions were 20–23% lower than under well-watered conditions. Drought, N and K deficiencies, and pest infestation are the major determinants for high yields in rainfed environments in Jakenan. Supplying adequate nutrient and good pest control are at least as important as drought management for increasing crop productivity of rainfed rice-growing areas in Central Java. The relative importance of drought, nutrient and pest management may vary in other rainfed areas. Yield constraints analysis should be systematically carried out to identify appropriate management strategies. 相似文献
Asymmetric warming and frequent temperature extremes are the consequences of climate change that are affecting crop growth and productivity over the globe while heat stress at early filling stage is of serious concern for the early-season rice in double cropping rice system of South China. In present study we assessed different short-term water management strategies to cope with the high temperature at early filling stage in rice. Water was applied as flood irrigation at two various depths i.e., 4–5 cm (I1) and 5–10 cm (I2) during 9:00–18:00 and then drained off at 18:00 as well as applied over-head during different time spans i.e., over-head sprinkle irrigation during 11:00–12:00, 13:00–14:00 and 14:00–15:00 at 60–80% relative humidity (RH) at early filling stage and regarded as S1, S2 and S3, respectively. A control was maintained with the maintenance of 1 cm water layer as normal farmer practice of this region. A fragrant rice cultivar, ‘Yuxiangyouzhan’ in early March (regarded as early season rice) in both 2014–15 and the effectiveness of different water management strategies were measured by estimating physio-biochemical responses, photosynthesis, yield and quality of rice exposed to high temperature stress at early filling stage. Our results showed that water treatments lowered lipid peroxidation (in terms of reduced malondialdehyde (MDA) contents) whilst proline and protein contents were affected differently. The water treatments also regulated the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), nevertheless, improved plant photosynthesis and gas exchange, rice yield and quality attributes considerably by lowering severity of canopy temperatures than control (CK). On average, both flood and sprinkler water application were proved effective against high temperature stress, nonetheless, flood irrigated treatments were remained more effective than sprinkler which provided 26.58 and 43.63% higher grain yields in 2014–15, respectively than CK. On average, 5.58 and 11.92% higher grain yields were recorded in flood irrigation than sprinkler irrigation whereas among individual water application treatments, I1 was noted as the most effective regarding grain yield of rice (26.76 and 49.35% higher yield than CK) in both years which suggests that maintenance of 4–5 cm water layer might be helpful for the rice to withstand against high temperature stress at post heading and/or early filling stage in early-season rice production in South China. 相似文献
Many crop growth models require daily meteorological data. Consequently, model simulations can be obtained only at a limited number of locations, i.e. at weather stations with long-term records of daily data. To estimate the potential crop production at country level, we present in this study a geostatistical approach for spatial interpolation and aggregation of crop growth model outputs. As case study, we interpolated, simulated and aggregated crop growth model outputs of sorghum and millet in West-Africa. We used crop growth model outputs to calibrate a linear regression model using environmental covariates as predictors. The spatial regression residuals were investigated for spatial correlation. The linear regression model and the spatial correlation of residuals together were used to predict theoretical crop yield at all locations using kriging with external drift. A spatial standard deviation comes along with this prediction, indicating the uncertainty of the prediction. In combination with land use data and country borders, we summed the crop yield predictions to determine an area total. With spatial stochastic simulation, we estimated the uncertainty of that total production potential as well as the spatial cumulative distribution function. We compared our results with the prevailing agro-ecological Climate Zones approach used for spatial aggregation. Linear regression could explain up to 70% of the spatial variation of the yield. In three out of four cases the regression residuals showed spatial correlation. The potential crop production per country according to the Climate Zones approach was in all countries and cases except one within the 95% prediction interval as obtained after yield aggregation. We concluded that the geostatistical approach can estimate a country’s crop production, including a quantification of uncertainty. In addition, we stress the importance of the use of geostatistics to create tools for crop modelling scientists to explore relationships between yields and spatial environmental variables and to assist policy makers with tangible results on yield gaps at multiple levels of spatial aggregation. 相似文献
Grapefruit growers in the tropics require information about existing and new citrus cultivars with high productivity potential. The objective of this study was to determine the growth, yield, and fruit quality performance of seven pigmented and four white grapefruit cultivars under the dry tropic conditions of Colima, Mexico. The trees were budded on sour orange (Citrus aurantium L.) rootstock and planted at a distance of 8 × 4 m. ‘Oroblanco’ and ‘Marsh Gardner’ white-fleshed grapefruit cultivars and ‘Chandler’, a pink-fleshed pummelo, were the largest trees with the greatest height (5.0–5.6 m), canopy diameter (6.2–6.3 m), trunk diameter (21.9–23.3 cm), and canopy volume (109–123 m3). Lower height (4.3–4.8 m) and canopy volume (73–96 m3), but with similar canopy diameter to the previously mentioned cultivars, were recorded for the remaining pigmented cultivars. ‘Chandler’ pummelo and four pigmented grapefruit cultivars (‘Shambar’, ‘Río Red’, ‘Ray Ruby’, and ‘Redblush #3’) had yearly productions of 34.8, 34.9, 34.1, 32.7, and 30.6 ton ha−1, respectively. The most productive white grapefruit cultivar was ‘Marsh Gardner’ (30.5 ton ha−1). Grapefruit cultivars having the largest fruit size showed a higher inverse relationship between fruit weight and yield than those with small fruit. Most genotypes had higher values of fruit weight, juice content, and maturity index than those required by the local market. The most promising grapefruit cultivars based on their acceptable growth, yield superior to 30 ton ha−1, and acceptable fruit color were ‘Río Red’, ‘Shambar’, ‘Ray Ruby’, and ‘Redblush #3’. 相似文献
Meeting demands for increased cereal production in China is a great challenge and this paper provides updated information on cereal production and the potential adaptation of cropping systems to climate change, as well as on progress in improving yield potential and developing molecular markers and GM cereals in China. Maize production and soybean imports are increasing significantly to meet the strong demand for feed by a rapidly growing livestock industry. Extension of the rice and maize growing seasons in northeastern China and improvement of the cropping system through delayed wheat planting have contributed to improving cereal productivity despite changing climatic conditions. Significant improvements in yield potential of rice, maize, and wheat have been achieved. Comparative genomics has been successfully used to develop and validate functional markers for processing quality traits in wheat, and also for developing new varieties. Although transgenic Bt rice and maize, and maize expressing phytase have been developed, their commercialization has not been officially permitted. International collaboration has contributed significantly to cereal production by providing germplasm and improved crop management practices. Full integration of applied molecular technologies into conventional breeding programs and promotion of lower-input technologies, will play a key role in increasing and sustaining future cereal production. 相似文献