首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   4篇
林业   1篇
农学   1篇
  1篇
综合类   3篇
农作物   1篇
畜牧兽医   1篇
植物保护   34篇
  2020年   1篇
  2017年   2篇
  2016年   2篇
  2014年   2篇
  2013年   3篇
  2012年   4篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2008年   4篇
  2007年   3篇
  2006年   3篇
  2005年   5篇
  2004年   1篇
  2001年   2篇
  1998年   2篇
  1995年   2篇
  1991年   1篇
  1982年   1篇
排序方式: 共有42条查询结果,搜索用时 15 毫秒
1.
BACKGROUND: Previous work has characterised pyrethroid resistance in pollen beetle (Meligethes aeneus F.) as principally an oxidative mechanism. Piperonyl butoxide (PBO) can synergise this resistance in the field, but its effects on the honey bee are thought to be unacceptable. RESULTS: A field trial in Poland was conducted to show that a mixture of PBO and tau‐fluvalinate at the registered rate gave increased and longer‐lasting control of resistant pollen beetle. Four days after spraying with tau‐fluvalinate, only 20% of pollen beetles were controlled, compared with 70% if the tau‐fluvalinate/PBO mixture was used. No detriment to honey bee health was observed using the same mixture. CONCLUSIONS: PBO, if used in conjunction with a pyrethroid of relatively low bee toxicity, can successfully overcome pyrethroid resistance in pollen beetle without incurring an increased loss of honey bees, even if they are present at the time of spraying. Copyright © 2012 Society of Chemical Industry  相似文献   
2.
BACKGROUND: To reduce rates of synthetic insecticide applications, natural product alternatives and synergists are needed. A study has been made of the toxicity of ethanolic senescent leaf extracts (SLEs) of Jatropha gossypifolia and Melia azedarach on larvae of the noctuid pest Spodoptera frugiperda. Their effects as syngergists and inhibitors of several enzyme activities are also reported. RESULTS: When added to the diet, M. azedarach SLE showed lower toxicity than J. gossypifolia SLE. However, after 2 weeks on the diet, the M. azedarach SLE proved to be lethal to 100% of the larval population. Artificial diets with both SLEs have an antifeedant effect on armyworm larvae. Acute toxicity after topical application in a dipping assay was relatively low for both J. gossypifolia and M. azedarach SLEs (LC50 of 2.6 and 1.4 g L?1, respectively, after 24 h). However, mixtures of the SLEs of M. azedarach and J. gossypifolia had a strong synergistic effect with cypermethrin. Synergism was higher with the J. gossypifolia SLE, perhaps because it contains several natural products with a methylenedioxyphenyl moiety. Both extracts inhibited P450, general esterase and acetylcholinesterase activities in vitro and in vivo. CONCLUSION: Both J. gossypifolia and M. azedarach SLEs are antifeedants to armyworm larvae when present in the food, and also have a synergistic effect with cypermethrin in topical assays. Although the synergistic effect is less than with piperonyl butoxide, both SLEs have some inhibitor activity against detoxification enzymes and acetylcholinesterase. Thus J. gossypifolia and M. azedarach SLEs may be considered as ecofriendly approaches for the control of S. frugiperda in order to reduce cypermethrin usage. Copyright © 2012 Society of Chemical Industry  相似文献   
3.
4.
BACKGROUND: Aedes aegypti L. is the major vector of dengue fever and dengue hemorrhagic fever. In an effort to find effective tools for control programs to reduce mosquito populations, the authors assessed the acute toxicities of 14 monoterpenoids, trans‐anithole and the essential oil of rosemary against different larval stages of Ae. aegypti. The potential for piperonyl butoxide (PBO) to act as a synergist for these compounds to increase larvicidal activity was also examined, and the oviposition response of gravid Ae. aegypti females to substrates containing these compounds was evaluated in behavioral bioassays. RESULTS: Pulegone, thymol, eugenol, trans‐anithole, rosemary oil and citronellal showed high larvicidal activity against all larval stages of Ae. aegypti (LC50 values 10.3–40.8 mg L?1). The addition of PBO significantly increased the larvicidal activity of all test compounds (3–250‐fold). Eugenol, citronellal, thymol, pulegone, rosemary oil and cymene showed oviposition deterrent and/or repellent activities, while the presence of borneol, camphor and β‐pinene increased the number of eggs laid in test containers. CONCLUSIONS: This study quantified the lethal and sublethal effects of several phytochemical compounds against all larval stages of Aedes aegypti, providing information that ultimately may have potential in mosquito control programs through acute toxicity and/or the ability to alter reproductive behaviors. Copyright © 2008 Society of Chemical Industry  相似文献   
5.
本文针对卫生杀虫领域中常用的增效剂-增效醚,采用气相色谱法,以邻苯二甲酸二辛酯为内标,SE-30为填充柱,在适当操作条件下进行定量分析,其方法的变异系数为0.3%,平均回收率100.98%,线性相关系数为0.9986。  相似文献   
6.
The interactions between six insecticides (indoxacarb, cypermethrin, chlorpyrifos, azinphosmethyl, tebufenozide and chlorfenapyr) and three potential synergists, (piperonyl butoxide (PBO), S,S,S-tributyl phosphorotrithioate (DEF) and diethyl maleate (DEM)) were studied by dietary exposure in a multi-resistant and a susceptible strain of the obliquebanded leafroller, Choristoneura rosaceana (Harris). The synergists did not produce appreciable synergism with most of the insecticides in the susceptible strain. Except for tebufenozide, PBO synergized all the insecticides to varying degrees in the resistant strain. A very high level of synergism by PBO was found with indoxacarb, which reduced the resistance level from 705- to 20-fold when PBO was administered alone and to around 10-fold when used in combination with DEF. DEF also synergized indoxacarb, cypermethrin, chlorpyrifos, azinphosmethyl and tebufenozide in the resistant strain. DEM produced synergism of indoxacarb, chlorpyrifos, azinphos-methyl and chlorfenapyr in the resistant strain. DEM was highly synergistic to cypermethrin, and to some extent to tebufenozide in both the susceptible and resistant strains equally, implying that detoxification by glutathione S-transferases was not a mechanism of resistance for these insecticides. The high level of synergism seen with DEM in the case of cypermethrin may be due to an increase in oxidative stress resulting from the removal of the antioxidant, glutathione. These studies indicate that enhanced detoxification, often mediated by cytochrome P-450 monooxygenases, but with probable esterase and glutathione S-transferase contributions in some cases, is the major mechanism imparting resistance to different insecticides in C. rosaceana.  相似文献   
7.
The involvement of metabolic enzymes in the resistance of a laboratory colony of diamondback moth, Plutella xylostella (L), to the neonicotinoid insecticide acetamiprid was determined with the synergists piperonyl butoxide (PBO), which suppresses the activity of cytochrome P-450 monooxygenases, and S,S,S-tributyl phosphorotrithioate (DEF), an inhibitor of esterases, using the leaf-dipping method. Both PBO and DEF enhanced the insecticidal activity of acetamiprid significantly in the resistant P. xylostella strain but not in a reference strain, suggesting that cytochrome P-450 monooxygenases and esterases play an important role in the resistance of P. xylostella to acetamiprid. The resistant P. xylostella strain was also reared without further exposure to acetamiprid to determine the stability of resistance. Maintaining the resistant strain for seven generations in the absence of selection pressure resulted in a drop in resistance ratio from 110 to 2.42, indicating that acetamiprid resistance in P. xylostella is not stable.  相似文献   
8.
9.
BACKGROUND: It has been reported previously that piperonyl butoxide (PBO) can inhibit both P450 and esterase activity. Although the method by which PBO combines with cytochrome P450 has been identified, the way in which it acts as an esterase inhibitor has not been established. This paper characterises the interactions between PBO and the resistance‐associated esterase in Myzus persicae, E4. RESULTS: After incubation with PBO/analogues, hydrolysis of 1‐naphthyl acetate by E4 is increased, but sequestration of azamethiphos is reduced. Rudimentary in silico modelling suggests PBO docks at the lip of the aromatic gorge. CONCLUSIONS: PBO binds with E4 to accelerate small substrates to the active‐site triad, while acting as a blockade to larger, insecticidal molecules. Structure–activity studies with analogues of PBO also reveal the essential chemical moieties present in the molecule. © 2012 Society of Chemical Industry  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号