首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   259篇
  免费   19篇
  国内免费   17篇
林业   2篇
农学   157篇
  11篇
综合类   42篇
农作物   38篇
水产渔业   11篇
畜牧兽医   11篇
园艺   11篇
植物保护   12篇
  2023年   4篇
  2022年   6篇
  2021年   5篇
  2020年   11篇
  2019年   11篇
  2018年   9篇
  2017年   4篇
  2016年   15篇
  2015年   14篇
  2014年   10篇
  2013年   11篇
  2012年   15篇
  2011年   23篇
  2010年   8篇
  2009年   15篇
  2008年   11篇
  2007年   12篇
  2006年   12篇
  2005年   10篇
  2004年   4篇
  2003年   6篇
  2002年   7篇
  2001年   5篇
  2000年   8篇
  1999年   9篇
  1998年   2篇
  1997年   4篇
  1996年   5篇
  1995年   3篇
  1994年   7篇
  1993年   5篇
  1992年   3篇
  1991年   7篇
  1989年   3篇
  1988年   3篇
  1986年   1篇
  1984年   1篇
  1982年   2篇
  1980年   1篇
  1977年   1篇
  1955年   2篇
排序方式: 共有295条查询结果,搜索用时 15 毫秒
1.
Wild radish (Raphanus raphanistrum) has developed introgressed populations after hybridization with its cultivated counterpart (R. sativus) in California. Hybridization with various Brassica and Sinapis species is also possible. To determine if hybridization is responsible of the genetic diversity of European populations, six wild radish populations with distinct morphological traits were sampled from geographically distant regions in Europe. Plants were cultivated in an oilseed rape field and in insect‐proof cages. Silique and flower morphology, growth, and reproductive traits were measured. The wild radish populations could be discriminated by the morphological traits, but not related to geographic regions. In particular, populations of one region showed wide variability in terms of silique shape and growth behaviour, and small‐sized flowers. Although the origin of morphological diversity in wild radish is unclear, i.e. native or due to gene flow from the cultivated radish or other Brassicaceae, significant morphological divergence was found that could have relevant effects on plant ecology and adaptation.  相似文献   
2.
Heading date is one of the most important traits in rice and regulated by multiple genes. Common wild rice is the ancestor of Asian cultivated rice and harbours abundant genetic diversity. To use wild rice resource in rice breeding, a set of 154 introgression lines (ILs) covering 93% of the genome of Jinghong common wild rice was constructed in the background 'Teqing', using 208 simple sequence repeat markers evenly distributed on 12 chromosomes. Among the ILs, the line JIL64 displayed late heading independent of photoperiod. Genetic analysis using the two F2 populations crossed ''Teqing'/JIL64 and JIL64/'Teqing' revealed that late flowering was controlled by a recessive gene on chromosome 8 (designated early heading date 8, ehd8), and ehd8 was fine mapped to the 50‐kb region flanked by markers RM22221 and 64Indel4. Sequencing and qRT‐PCR demonstrated that LOC_Os08g01410 and LOC_Os08g01420 were deleted in JIL64 and may be associated with the late heading of Jinghong common wild rice. These findings lay a practical foundation for characterizing ehd8, and the ILs help to mine genes from Jinghong common wild rice.  相似文献   
3.
Introgression populations consist of a set of introgression lines or families, constructed by continuous backcrossing to the recurrent parent, while carrying a limited number of chromosome segments from a donor parent in their genomes. Increasing the genome coverage is an important aim when constructing introgression population. In this study, we proposed bulk pollen pollination (BPP) method and used it to increase the genome coverage of a maize introgression population. The results showed that the genome coverage of the introgression population constructed using BPP method reached 100% at BC3 generation, which accorded with the simulation result. The BPP‐based BC3F1:2 population could identify most quantitative trait loci (QTL) detected using the F2:3 population, especially major QTL. Simulation analysis showed that the genome coverage of introgression population increased with the increase of population size and the number of bulked plants, and decreased with the increase of backcross generation. Our results proved the reliability of the BPP‐based introgression population in increasing genome coverage and detecting QTL, and provided references for constructing high‐coverage introgression populations.  相似文献   
4.
  1. The Atlantic salmon shows strong population structure with reduced gene flow, owing to homing behaviour. Supportive breeding with allochtonous parr or fish‐farm escapees could affect native population genetic structure by the introgression of foreign genes. Mature male parr are potentially powerful vehicles for promoting introgression: they can fertilize eggs in competition with anadromous males. As a consequence, foreign males contribute more to introgression than foreign females. This effect must be taken into account for the correct development of conservation programmes. Foreign males constitute an inadvertent way to disrupt the genetic structure, as the allochtonous parr or fish‐farm escapees can survive in the river during the parr stage.
  2. A short polymorphic fragment of the sex‐determining gene (sdY) was used as a marker to assess introgression via males into south European salmon populations. In order to find haplotype variants for the intronic sequence of sdY, samples were investigated from 16 different rivers across the distribution range of the salmon, together with historical samples (1950–1960) from three Spanish rivers.
  3. Two novel haplotypes, in addition to the three already described in Atlantic salmon, were found for this locus. Most samples, including historical ones, displayed the common haplotype (D) previously found in salmon all over Europe; however, north European haplotype variants were also detected in salmon inhabiting the southern European rivers that were systematically supplemented with foreign stocks between 1981 and 1994.
  4. Analysis of haplotype variation in the sdY intron constitutes a powerful and inexpensive tool, not only to specifically assess male‐mediated introgression into natural populations of Atlantic salmon, but also for monitoring salmon escapees.
  相似文献   
5.
Development of kunitz trypsin inhibitor (KTI)-free soybean is crucial for soy-food industry as the heat inactivation employed to inactivate the anti-nutritional factor in regular soybean incurs extra cost and affects protein solubility. In the presented work, a null allele of KTI from PI542044 was introgressed into cultivar ‘JS97-52’ (recurrent parent) through marker assisted backcrossing. Foreground selection in BC1F2, BC2F2 and BC3F2 was carried out using the null allele-specific marker in tandem with SSR marker Satt228, tightly linked with a trypsin inhibitor Ti locus. Background selection in null allele-carrying plants through 106 polymorphic SSR markers across the genome led to the identification of 9 KTI-free lines exhibiting 98.6% average recurrent parent genome content (RPGC) after three backcrosses, which otherwise had required 5–6 backcrosses through conventional method. Introgressed lines (ILs) were free from KTI and yielded at par with recurrent parent. Reduction of 68.8–83.5% in trypsin inhibitor content (TIC) in ILs compared to the recurrent parent (‘JS97-52’) was attributed to the elimination of KTI.  相似文献   
6.
Lolium species (considered the ideal grasses for European agriculture) are not sufficiently robust to meet many of the environmental challenges that face extensive agriculture in less favoured areas. Fortunately, adaptations to abiotic and biotic stresses exist amongst Festuca species related closely to Lolium. The complex of species has an enormous wealth of genetic variability and potentiality for genetic exchange, thus offering unique opportunities for the production of versatile hybrid varieties with new combinations of useful characters suited to modern grassland farming. The attributes of Lolium and Festuca can be combined into a single genotype by amphiploidy or alternatively, a limited number of characters can be selectively introgressed from Festucainto Lolium or vice versa. Androgenesis of the interspecific hybrids can generate genotypes combining characters that may not be recovered by sexual backcrossing. Genomic in situ hybridization(GISH) can differentially ‘paint’ the chromosomes of Lolium and Festuca and identify Lolium-Festuca recombinant chromosomes. GISH is valuable in the analysis of amphiploids, introgressions and androgenic genotypes and can be used to physically map introgressed traits. Introgression mapping is a powerful new approach to the mapping of traits and arises from a fusion of physical and genetic mapping. For example, in a diploidLolium introgression genotype with only one introgressed Festucasegment, the gene(s) for any Festucaderived trait expressed by the plant must be located within the segment. Using GISH and molecular markers, a dense but highly localised map of the Festuca segment is made in isolation of the Loliumgenome – this may simplify QTL analysis. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
7.
Colchicine induced polyploids have not directly contributed for crop improvement in the past. On the other hand, the so-called natural polyploids, derived from the functioning of numerically unreduced(2n) gametes have been shown to be more relevant for crop improvement in many cases. Different types of cytological abnormalities during meiosis can give rise to 2n gametes and the genetic composition of these gametes is variable. Depending on the type meiotic abnormalities, various types of 2ngametes, such as first division restitution(FDR), second division restitution (SDR),indeterminate meiotic restitution (IMR) and post meiotic restitution (PMR) gametes,among others, have been described in recent years. For the improvement of autopolyploids such as potato, alfalfa,Vaccinium spp., and some of the fodder grasses, FDR gametes have been proved to be highly useful. However, the use of 2n gametes for the improvement of allopolyploid crops has received much less attention so far. Some of the investigations on allopolyploids, derived from Festuca-Lolium, Alstroemeria and Lilium species hybrids, have revealed that 2ngametes can be most useful for the introgression of alien genes and chromosomes into cultivars. An important feature of using sexual polyploidization in the case of allopolyploids is that introgression can be achieved through recombination due to genetic crossing-over between alien chromosomes as well as addition of alien chromosomes, which is extremely difficult or impossible to achieve in the case of colchicine induced allopolyploids. Because of the recent developments in the field of plant molecular biology, methods have become available for the analysis of 2ngametes and sexual polyploid progenies more accurately and to develop systematic breeding approaches. The methods include DNA in situ hybridization (GISH and FISH)and molecular mapping (AFLP, RFLP, RAPDs).In addition to providing basic information on the genetic and genome composition of the polyploid progenies, these methods can be potentially useful for a more efficient creation of desirable breeding material and cultivars. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
8.
Cytoplasmic male sterility (CMS) system based on the cytoplasm from Moricandia arvensis (mori) was investigated for fertility restoration and agronomic potential. Fertility restorer gene for mori CMS was introgressed from cytoplasm donor species as all the evaluated Brassica juncea genotypes (155) acted as sterility maintainers. The allosyndetic pairing between Ma and the A/B genome chromosomes in the monosomic addition plants (2n= 18II + 1Ma) facilitated the gene introgression. Partial fertility restoration (43–52% pollen grain stainability) in F1 hybrids and absence of segregation for male sterility in F2 progenies suggested gametophytic control of fertility restoration. The pollen fertility in the F1 hybrids was, however, sufficient to ensure complete seed set upon bag selfing. Introgression from M. arvensis also helped in correction of chlorosis associated with mori cytoplasm in CMS and fertile alloplasmic B. juncea plants. Yield evaluation of thirty F1 hybrids having the same nuclear genotype but varied male sterilizing cytoplasms (mori, oxy, lyr, refined ogu), in comparison to respective euplasmic hand bred control hybrids, allowed an estimate of yield penalty associated with different CMS systems. It ranged from 1.8% to 61.6%. Hybrids based on cytoplasmically refined ogu were most productive followed by those based on cytoplasmically refined mori CMS. The male sterility systems emanating from somatic hybridization were found superior than those developed from sexual hybridization.  相似文献   
9.
Amplified fragment length polymorphisms (AFLPs) were used to follow the possible introgression of maize DNA into haploids of wheat as a side‐effect of exploiting wheat x maize hybridization for haploid production. AFLPs were generated with 64 MseI/ EcoRI and 64 MseI/ PstI primer combinations, and the AFLP profiles of haploids were tested against those of maize and of the regular wheat varieties involved in the crosses. On average, 45.1 and 110.7 fragments were produced per assay with the MseI/EcoRI and MseI/PstI combinations, respectively. Different numbers of fragments were produced for wheat and maize: an average of 81 in the haploid, 80 in the wheat parent, and only 67.1 in maize. No evidence was found for introgression of maize into the wheat genome. Three unique AFLP fragments were detected in haploids, which were not present in the parental wheat genotypes. These ‘novel’ AFLP bands in the haploids could be caused by nucleo‐cytoplasmic interaction in the hybrid zygote. Such instability in the wheat genome is defined as temporal, as it was not detected in further generations when colchicine‐doubled progeny of the haploids was tested for the presence of polymorphic fragments.  相似文献   
10.
The bottleneck restricting introgression of useful genes directly from diploid into hexaploid wheats is the low number of BC1F1 seeds obtained. In crosses between hexaploid wheat (Triticum aestivum L.; AABBDD) and Aegilops squarrosa L. (DD) or T. urartu Thum. (AA), this bottleneck may be overcome simply by pollinating a sufficient number of F1 spikes. However, hybrids between hexaploid wheat cultivars (T. aestivum) and T. monococcum L. (AA) generally are highly female-sterile, often having no pistils. One T. monococcum accession, PI 355520, when crossed with T. aestivum, produced hybrids with female fertility in the same range as that of T. aestivum/A. squarrosa or T. aestivum/T. urartu hybrids, ca. 0.5 to 1.0 backcross seed per spike. We found that female fertility was controlled by two duplicate genes in PI 355520, and that this accession can be used as a bridging parent to introgress genes from other T. monococcum accessions into hexaploid wheat. Pairing of homologous chromosomes was less frequent and weaker in such crosses than in T. aestivum/A. squarrosa crosses, but homoeologous bivalents occurred at a rate of almost 0.5 II per cell. Restitution division was detected in crosses involving all three diploid species and was confirmed cytologically in crosses with PI 355520. Chromosome numbers of BC1F1 plants ranged from 35 to 67; plants with 49 or more chromosomes occurred at frequencies of 0.09 to 0.21 among progeny of A. squarrosa and T. urartu and 0.29 in progeny of T. aestivum/T. monococcum crosses involving PI 355520. These results are consistent with those of previous studies, demonstrating the potential of direct Hexaploid/diploid crosses for rapidly introgressing useful genes into Hexaploid wheat with minimum disturbance of the background genotype.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号