首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46篇
  免费   5篇
林业   1篇
农学   7篇
综合类   9篇
农作物   1篇
园艺   1篇
植物保护   32篇
  2023年   1篇
  2021年   3篇
  2020年   3篇
  2016年   2篇
  2015年   1篇
  2013年   3篇
  2012年   4篇
  2011年   2篇
  2010年   3篇
  2009年   3篇
  2008年   4篇
  2007年   1篇
  2006年   3篇
  2005年   3篇
  2003年   2篇
  2001年   4篇
  2000年   1篇
  1999年   1篇
  1998年   4篇
  1996年   2篇
  1994年   1篇
排序方式: 共有51条查询结果,搜索用时 15 毫秒
1.
双生病毒是一类在全球范围内危害严重的单链环状DNA病毒。本研究从2017年采自云南的胜红蓟样品中(YN2017)获得了一条菜豆金色花叶病毒属病毒和一条β卫星的全基因组序列。该双生病毒的全长序列与烟草曲茎病毒的相似性最高,为99.60%,确定为烟草曲茎病毒的分离物。YN2017β卫星与中国胜红蓟黄脉β卫星的同源性最高,为90.8%。进一步分析发现,该β卫星的卫星保守区域(SCR)至富含腺嘌呤区(A-rich区)之间约1 kb的序列与中国胜红蓟黄脉β卫星相应序列的相似性高达97.2%;其包含的A-rich区上游与SCR之间约300 bp的序列与中国胜红蓟黄脉β卫星相应序列的相似性仅为70.2%,而与烟草曲茎β卫星相应序列的相似性最高,为97.3%。重组分析发现,所分离的β卫星是由中国胜红蓟黄脉β卫星和烟草曲茎β卫星重组产生。这是首次在中国发现由不同的β卫星重组产生的β卫星分子。  相似文献   
2.
The virological situation of cassava in Africa is increasing in complexity due to the number and types of viruses isolated from different locations within the continent. Here, we report the complete nucleotide sequences of both A and B components of two geminivirus species infecting cassava in the Ivory Coast and review the current knowledge of the molecular and biological diversity of the African cassava geminiviruses. As a whole, newly obtained sequences are compared with those of the African cassava mosaic geminiviruses identified to date. Results indicate that all isolates of African cassava mosaic virus (ACMV), irrespective of their geographical origin are clustered together with little or no variation in their genomic sequence. On the contrary, the genomes of the East African cassava mosaic virus (EACMV) are more genetically diverse due to the frequent occurrence of recombinations within their two components. Indeed, the EACMV-like viruses vary so much that their classification is becoming problematic. In addition, there is also a large range of phenotypic symptom variation for each of these virus species, irrespective of the location of isolation. Furthermore, it has been shown that ACMV and EACMV can be synergistic in cassava, resulting in a greater DNA accumulation and consequently inducing severe symptoms. For all these reasons, this paper initiates a discussion concerning the species demarcation for cassava geminivirus. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
3.
Plants collected in thirteen wild populations of Capsicum annuum from Northwest Mexico were tested for resistance to the pepper huasteco begomovirus (formerly subgroup III) (PHV) that is transmitted by the white fly Bemisia tabaci Genadius. Plants were inoculated using both grafting and biolistic methods. Presence of viral DNA was detected by dot blot hybridization and densitometry. Populations varied in their resistance to PHV. Plants of only two of the populations either did not develop disease symptoms or showed very light symptoms after inoculation. In some cases, symptoms appeared several days after inoculation. In plants of these populations viral DNA was detected by dot-blot hybridization assays but they appear to be a good source of resistance (symptomless) for use in breeding programmes. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
4.
Begomoviruses were detected in Nicaraguan fields of tomato ( Lycopersicon esculentum ) and adjacently growing plants of pepper ( Capsicum annuum ), chilli pepper ( C . baccatum ), cushaw ( Cucurbita argyrosperma ) and Mexican fireplant ( Euphorbia heterophylla ) using polymerase chain reaction (PCR) and universal begomovirus primers. All tomato and Mexican fireplant plants showing symptoms were infected with begomoviruses, while only 30–46% of the pepper, chilli pepper and cushaw plants showing symptoms tested virus-positive. No begomoviruses were found in potato. The virus species were provisionally identified by sequencing 533 bp of the viral coat protein gene ( AV1 ). Tomato severe leaf curl virus (ToSLCV), Tomato leaf curl Sinaloa virus (ToLCSinV) and Pepper golden mosaic virus (PepGMV) were found to infect both tomato and pepper. A new provisional species designated Tomato leaf curl Las Playitas virus (ToLCLPV) was detected in a tomato plant. Squash yellow mottle virus (SYMoV) and PepGMV were found in cucurbits, the latter for the first time in this host. Euphorbia mosaic virus (EuMV) was detected in Mexican fireplant. Sequencing of a larger number of PCR-amplified clones from selected plants revealed intraspecific viral sequence variability, and also multiple begomovirus infections which could represent up to three species in a single tomato or cushaw plant. Phylogenetic grouping of virus sequences did not correlate with the host of origin.  相似文献   
5.
Genomic characterization using nonradioactive probes, polymerase chain reaction with degenerate primers for whitefly transmitted geminiviruses and nucleotide sequencing were used to describe a new bipartite geminivirus, associated with dwarfing and leaf curling of tomatoes and peppers in Jamaica. Partial DNA-A and DNA-B clones were obtained. DNA sequence analysis showed that tomato and pepper samples have a similar geminivirus associated with them. Nucleotide sequence identity > 92% between the common regions of DNA-A and DNA-B confirmed the bipartite nature of the Jamaican geminivirus isolates. Nucleotide sequence comparisons of DNA-A and DNA-B with those of geminiviruses representing the major phylogenetic groups of Western Hemisphere geminiviruses showed the greatest similarity to potato yellow mosaic virus and members of the Abutilon mosaic virus cluster of geminiviruses. This new virus is given the name tomato dwarf leaf curl virus (TDLCV) because of the dwarfing and leaf curling symptoms associated with infected tomato plants. Polymerase chain reaction and Southern hybridization showed mixed infections of TDLCV with tomato yellow leaf curl virus from Israel in 16% of the field samples of tomatoes and peppers.  相似文献   
6.
Natural occurrence of a geminivirus causing severe leaf curl disease on sunn hemp (Crotalaria juncea) was recorded in India. The association of a geminivirus with the disease was demonstrated by whitefly transmission tests and polymerase chain reaction (PCR) amplification of DNA fragments of expected sizes with three pairs of degenerate geminivirus primers. The PCR-amplified viral DNA fragments were further characterized by Southern hybridization with a geminivirus probe consisting of the cloned coat protein (CP) gene of Indian tomato leaf curl virus (ITLCV). Restriction fragment length polymorphism analysis of a PCR-amplified CP fragment revealed that the geminivirus from sunn hemp was different than ITLCV.  相似文献   
7.
Yellow vein mosaic disease (YVMD) caused by whitefly‐transmitted begomoviruses is an economically significant viral disease of okra. In this study, a survey of begomoviruses associated with YVMD was carried out in eight states and two union territories of India. A total of 92 full‐length DNA‐A components were sequenced and characterized. Sequence comparisons and population structure analysis revealed the existence of four begomovirus species. Two novel species were detected with several recombinationally derived genome fragments that probably originated from begomoviruses known to infect malvaceous and non‐malvaceous hosts. Among the four species, Bhendi yellow vein Maharastra virus (BYVMaV) and Bhendi yellow vein Madurai virus (BYVMV) were found to be predominant in okra, with BYVMV having a pan‐India distribution. There was evidence for a high degree of genetic variability and subpopulation structure within these four species. Neutrality tests suggested the occurrence of purifying selection acting upon these populations. The results of the current study have uncovered the diversity and genetic structure of okra‐infecting begomoviruses in India and generated potentially useful information for developing management strategies for YVMD.  相似文献   
8.
During the last decade, the leafhopper transmitted Wheat dwarf virus (WDV) has become a serious problem both in northwestern China and Hungary. In order to study the molecular diversity and population structure of WDV in these two countries, 39 Chinese isolates and 16 Hungarian isolates were collected from different regions of China and Hungary, and their genomes were sequenced. All isolates belonged to the wheat strain of WDV and showed limited genetic diversity. The highest and lowest nucleotide sequence identities among isolates from China and Hungary were 99.9 and 90%, respectively. In all isolates, the lowest nucleotide sequence identity was 89.5% between MO10-1 and KP10-5, which were collected from Martonvásár and Kompolt, Hungary. Phylogenetic analyses showed the genome sequences of 55 WDV isolates belong to two big clades, but no clear correlation to geographical location. Population difference analyses indicated that the Chinese and Hungarian WDV populations have no significant difference. The regions in WDV genome with relatively low nucleotide diversities represented protein coding regions suggested that these regions evolved under negative selection, and might be one of the causes restricting the number of genetic variants.  相似文献   
9.
1个台湾番茄曲叶病毒温州分离物的全基因组序列   总被引:2,自引:0,他引:2       下载免费PDF全文
从浙江温州田间表现曲叶症状的番茄叶中提取获得病毒分离物wzh,对wzh全基因组序列进行测定。结果表明:wzh全长2 740个核苷酸,具有菜豆金色花叶病毒属(Begomovirus)病毒基因组典型特征,共编码6个开放阅读框(open reading frame,ORF),病毒链编码AV2及AV1 2个ORFs,互补链编码AC1、AC2、AC3及AC4 4个ORFs。BLAST搜索结果显示,wzh与Begomovirus中来自亚洲的病毒同源性较高,而与美洲、非洲等地的相对较低,与台湾番茄曲叶病毒(Tomatoleaf curl Tai wan virus,ToLCTWV)DNA-A全序列同源性最高,为99%。全序列系统进化关系树显示,wzh与TolCTWV的亲缘关系最近,并形成一个独立的分支,而与其他19种双生病毒的亲缘关系均相对较远。因此,wzh是台湾番茄曲叶病毒的一个分离物。  相似文献   
10.
从河南省长葛市的番茄病株上分离到4份病毒分离物HNCG1、HNCG2、HNCG3和HNCG4,为明确病原类型及其亲缘关系,首先采用检测双生病毒的简并引物进行检测,均能从样品中扩增出约500 bp的片段,4个序列同源性达99%。对HNCG4基因组DNA-A全序列测定表明,其全长为2 781 bp,与番茄黄化曲叶病毒(TYLCV)省内分离物(HNSQ1、HNNY1、HNLY1、HNQX)及其临近省份的河北分离物(TYLCV LF)、北京分离物(TYLCV BJ3)亲缘关系较近,序列同源性均达99%。进一步研究发现,HNCG1和HNCG4均伴随有1 347 bp的卫星DNAβ,而HNCG2和HNCG3中未检测到DNAβ。序列比对结果表明,HNCG1和HNCG4的DNAβ之间序列同源性为100%,与越南TYLCV分离物DX2的卫星DNAβ序列同源性最高,达88%。根据以上结果,引起河南省长葛市番茄黄化曲叶病的病毒为TYLCV,部分分离物伴随有卫星DNA分子。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号