首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   1篇
  国内免费   1篇
林业   1篇
  12篇
综合类   8篇
水产渔业   4篇
园艺   1篇
  2022年   1篇
  2020年   3篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   4篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  1997年   1篇
  1995年   2篇
排序方式: 共有26条查询结果,搜索用时 187 毫秒
1.
我国稻田系统镉污染风险与阻控   总被引:7,自引:3,他引:4  
过去30年的工业化和环保措施不到位导致我国部分地区农田土壤Cd污染较为严重。南方部分地区稻米Cd含量超标严重,危害农产品安全和人体健康。农田Cd不断输入、土壤酸化以及种植Cd积累能力较强的籼稻品种是部分地区稻米Cd含量超标的主要原因。我国人群Cd平均摄入量在过去30年里增加了一倍。本文综述了人体Cd摄入量的安全阈值,鉴于食用大米是我国人群Cd摄入的主要来源,重点介绍稻田系统控制稻米Cd积累的主要生物地球化学过程以及水稻Cd吸收积累与转运的分子遗传机制,在此基础上还建议了稻米Cd积累阻控的农艺和育种措施。  相似文献   
2.
第二代杉木林养分动态研究   总被引:3,自引:0,他引:3  
根据连续定位观测所取得的数据,对4个小集水区第二代10年生杉木人工林生态系统中的养分循环进行了研究.结果表明.集水区由降水输入的N、P、K、Ca、Mg等营养元素总计为59.285kg/hm2a,径流输出为38.938kg/hm2a,净积累量为20.347kg/hm2a.与该林分7年生时相比,净积累量提高了7.2%,说明集水区第二代杉木林生态恢复处于进展的变化过程.  相似文献   
3.
中国亚热带森林小流域植物生长驱动下矿物风化评估   总被引:1,自引:0,他引:1  
Plant growth contributes to mineral weathering, but this contribution remains poorly understood. Weathering rates in an aggrading forested watershed in subtropical China were studied by means of geochemical mass balance. Rainfall, dry deposition, and streamwater were monitored from March 2007 to February 2012. Samples of vegetative components, rainfall, dry deposition, streamwater, representative soils, and parent rock were collected and determined for mass balance calculation and clarifying plant-driven weathering mechanisms stoichiometrically. Ignoring biomass, weathering rates of Ca2+, Mg2+, Na+, and Si were 25.6, 10.7, 2.8, and 51.0 kg ha-1 year-1, respectively. Taking biomass into consideration, weathering rates of Ca2+, Mg2+, and Si and the sum of weathering rates of Ca2+, Mg2+, Na+, K+, and Si were 2.6, 1.8, 1.2, and 1.5-fold higher than those ignoring biomass, respectively. This is attributed to plant-driven weathering due to the nutrient (e.g., Ca2+, Mg2+, and K+) absorption by vegetation and substantial proton production during assimilation of these nutrients, with the former acting as a pump for removing weathering products and the latter being a source of weathering agents solubilizing mineral components. The same pattern of weathering, i.e., higher rates of weathering with than without including biomass in mass balance calculation, was reported in previous studies; however, the extent to which plants drive weathering rates varied with vegetation types and climatic zones. The documented biological weathering driven by plants is expected to play a critical role in regulating nutrient cycling and material flows within the Earth’s Critical Zone.  相似文献   
4.
Forest systems cover more than 4.1×109 ha of the Earth's land area. The future response and feedbacks of forest systems to atmospheric pollutants and projected climate change may be significant. Boreal, temperate and tropical forest systems play a prominent role in carbon (C), nitrogen (N) and sulfur (S) biogeochemical cycles at regional and global scales. The timing and magnitude of future changes in forest systems will depend on environmental factors such as a changing global climate, an accumulation of CO2 in the atmosphere, and increase global mineralization of nutrients such as N and S. The interactive effects of all these factors on the world's forest regions are complex and not intuitively obvious and are likely to differ among geographic regions. Although the potential effects of some atmospheric pollutants on forest systems have been observed or simulated, large uncertainty exists in our ability to project future forest distribution, composition and productivity under transient or nontransient global climate change scenarios. The potential to manage and adapt forests to future global environmental conditions varies widely among nations. Mitigation practices, such as liming or fertilization to ameliorate excess NOx or SOx or forest management to sequester CO2 are now being applied in selected nations worldwide.The U.S. Government's right to a non-exclusive, royalty free licence in and to any copyright is acknowledged.  相似文献   
5.
Throughfall (TF), stemflow (SF), soil solution below the organic layer (SSorg) and at 50 cm depth (SS50), and output with stream water (SW) were measured and analyzed for four years in a moderately polluted forest catchment in southern Poland. The input of water with stemflow was ca. 6% of input with TF. However, due to higher concentrations of most ions in SF, the input of most elements with SF was from 8% to 9%. Sulphate (SO4 2–), chloride (Cl) and magnesium (Mg2+) were the only ions steadily increasing in concentrations in water percolating through the soil profile. Nitrogen reached the forest floor mainly as ammonium (NH4 +). In the soil organic layer the NH4 + concentration decreased, while concentrations of nitrate (NO3 ) and hydrogen (H+) increased, probably due to nitrification. For NO3 , sodium (Na+) and calcium (Ca2+), the highest concentrations were found in SSorg and SW. This indicates both efficient cycling in the biotic pool of the ecosystem and intensive weathering processes in the mineral soil below the plant rooting zone. The latter was especially pronounced for Mg and Ca. Concentrations of zinc (Zn), lead (Pb) and cadmium (Cd) were the highest in SSorg and SS50. As this was accompanied by a low pH and constant input of H+, NH4 + and heavy metal ions to the catchment area, it may pose a serious threat to forest health.  相似文献   
6.
湿地生态系统磷迁移转化机制研究进展   总被引:1,自引:0,他引:1  
磷在湿地生态系统中的生物地球化学行为备受关注。湿地土壤以有机磷(OP)为主,无机磷(IP)为辅。铁铝结合态磷(Fe/Al-P)是IP的主要组分,钙镁结合态磷(Ca/Mg-P)惰性最强。OP因与土壤成分固定程度较低,更易在土壤中移动,而成为优于总磷(TP)可指示水体富营养化程度的指标。土壤酸碱度、温度、有机质含量、干湿交替和C∶N∶P是影响湿地生态系统磷生物地球化学循环过程的关键环境因素。耕地恢复为湿地后,湿地土壤TP含量基本呈升高趋势。速效磷(A-P)因对土壤理化性质的改变比较敏感,不同区域研究结果差异较大。随着退耕年限的延长,湿地土壤对磷的最大吸附量(Xm)、最大缓冲容量(MBC)和吸附常数(K)逐渐升高;但退耕初期,湿地土壤对磷的解吸率较高,可能会造成周边水域水体富营养化。  相似文献   
7.
已有研究表明,深海中嗜高压革兰氏阴性细菌在磷脂脂肪酸生物合成过程中稳定碳同位素分馏与细菌生长压力之间呈现出线性相关性,而表层革兰氏阳性细菌脂肪酸同位素特征与压力的关系尚不清楚。因此,本研究通过不同压力培养、脂肪酸提取以及二维单体同位素分析等工作,研究了在0. 1,10,20,30,40,50MPa压力下,革兰氏阳性细菌Bacillus subtilis磷脂脂肪酸碳、氢同位素特征。结果表明:(1)高压下(≥10MPa)支链与单不饱和脂肪酸氢同位素分馏随生长压力上升负偏趋势减弱,并与压力之间存在明显线性相关性。(2)高压下(≥10 MPa),支链与饱和脂肪酸的碳同位素分馏随压力上升而负偏趋势减弱,也与生长压力存在明显线性关系,并且,单不饱和脂肪酸δ13C保持稳定。由于压力促进了氢从NADPH向脂肪酸转化的效率,使反应更加完全,分馏效应减弱。因为碳、氢同位素分馏受压力控制,故而在研究深海有机物来源、转运、循环,尤其是深渊生物地球化学时,应充分评估:(1)稳定同位素分馏对生长压力的依赖;(2)嗜高压微生物对海底沉积物中有机物同位素组成的改造。  相似文献   
8.
  • 1. Increased inputs of nutrients to estuaries can lead to undesirable effects associated with eutrophication, including algal blooms, changes in species composition and bottom anoxia. Several estuaries and coastal areas around the UK have increased nitrogen (N) and phosphorus (P) concentrations, elevated concentrations of chlorophyll a and changes in algal community composition and abundance. This paper reviews the pressures that lead to high nutrient concentrations in estuaries and considers the likely effectiveness of current and proposed regulatory actions.
  • 2. The main sources of nutrients to estuaries are river runoff, sewage discharges, atmospheric inputs and possibly submarine groundwater discharges, although little is known about the latter. Significant reductions in N and P inputs have been realized following application of the EU's Urban Waste Water Treatment Directive. Atmospheric NOx and NHx emissions have also decreased and are expected to decrease further in the next decade as implementation of existing legislation continues, and new controls are introduced for activities such as shipping.
  • 3. Agricultural inputs reach estuaries principally through diffuse sources, either in surface water (and in some areas possibly groundwater) or, for N, via the atmosphere. Over 10 years ago the Nitrates Directive was introduced to tackle the problem of N discharges from agriculture but little change in N loads to estuaries has been recorded.
  • 4. To meet the aims of the EU Water Framework Directive, for at least ‘good’ ecological status, more rigorous application and implementation of the Nitrates Directive, together with changes in the Common Agriculture Policy and farming practice are likely to be needed. Even then, the slow response of the natural environment to change and the inherent variability of estuaries means that their responses may not be as predicted. Research is needed into the relationship between policy drivers and environmental responses to ensure actions taken will achieve the planned results.
Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
9.
Soil–atmosphere exchange of H2 is controlled by gas diffusion and the microbial production and oxidation activities in soil. Among these parameters, the H2 oxidation activity catalyzed by soil microorganisms harboring high affinity hydrogenase is the most difficult variable to parameterize because it is influenced by many unknown edaphic factors that shape microbial community structure and function. Here we seek to formulate a model combining microbiological and physicochemical variables to predict the H2 oxidation rate (u) in soil. Soil sample replicates collected from a grassland and three forests exhibited different H2 oxidation potentials. We examined the microbial community structure based on ribotyping analysis, the relative abundance of high affinity H2-oxidizing bacteria (HOB) estimated by qPCR and soil physicochemical characteristics as predictors for u. A single linear regression parameterized by total carbon content and a multiple linear regression using total carbon content and HOB relative abundance in soil explained 66 and 92% of the variance in u, respectively. Microbial community composition based on 16S rRNA gene pyrosequencing profiles was not a reliable predictor for u. Indeed, we found that HOB are members of the rare biosphere, comprising less than 1% of total bacteria as estimated by qPCR. We confirmed this relationship of u with total carbon content and HOB by an independent soil survey of 14 samples collected from maize monocultures, grasslands, deciduous forests and larch plantations. Observations made from both soil surveys thus were combined to build a predictive model for u parameterized with total carbon content and HOB relative abundance. Our results show that molecular biogeochemistry is a potential approach to improve performance of classical H2 surface flux models which estimate u empirically without considering variation in HOB distribution and activity in soil.  相似文献   
10.
通过土柱实验研究垃圾渗滤液污染物在地下环境中降解的生物地球化学作用和分带现象,并对污染前后土壤中的Fe3+、Fe2+、氧化容量(OXC)和还原容量(RDC)等的变化进行分析.结果表明,垃圾渗滤液污染羽中出现了4个顺序氧化还原带,微生物在每个带所利用的最终电子受体是不同的,分别为CO2、Fe3+、NO3-和O2,相应地依次称为产甲烷带、铁还原带、NO相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号