首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   0篇
林业   1篇
  36篇
综合类   2篇
水产渔业   2篇
畜牧兽医   1篇
  2022年   1篇
  2020年   1篇
  2017年   1篇
  2016年   2篇
  2013年   1篇
  2012年   1篇
  2008年   1篇
  2007年   1篇
  2004年   1篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1993年   3篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1989年   9篇
  1988年   3篇
  1987年   6篇
排序方式: 共有42条查询结果,搜索用时 15 毫秒
1.
Summary Plants grown from seed with high (1.5–7.3 g Mo seed-1) and low (0.07–1.4 g Mo seed-1) Mo contents were grown in the presence and absence of Mo in growth media (perlite) or in a flowing-solution culture, in a controlled environment. Neither the high (1.5 g Mo seed-1) nor the low (0.1 g Mo seed-1) Mo content in seed from a small-seeded genotype (BAT 1297) was able to prevent Mo deficiency (reduced shoot, root and nodule dry weight, N2 fixation and seed production) in growth media without an external supply of Mo, whereas both the high (7.3 g Mo seed-1) and the low (0.07 g Mo seed-1) contents in seed were able to prevent Mo deficiency in a large-seeded genotype (Canadian Wonder). Responses to Mo treatment by the Two genotypes were inconsistent between the growth media and solution culture experiments. Seed with a large Mo content (3.5 g Mo seed-1) from the Canadian Wonder genotype was unable to prevent Mo deficiency (reduced shoot and nodule dry weight and N2-fixation) in a solution culture without an external source of Mo, whereas both the large (1.7 g Mo seed-1) and the small (0.13 g Mo seed-1) contents in seed prevented a deficiency in BAT 1297. Growing plants from seed with a small Mo content, without additional Mo, reduced the seed Mo content by 83–85% and seed production by up to 38% in both genotypes. Changes in seed size and increases in shoot, root and nodule dry weight occurred, but varied with the genotype and growth conditions. These effects were also observed in some cases where plants were grown with additional Mo, demonstrating that the amount of Mo in the seed sown can influence plant nutrition irrespective of the external Mo supply. Nodule dry weight, total N content of shoots and seed production were improved by using seed with a small Mo content (1.64–3.57 g Mo seed-1) on acid tropical soils in Northern Zambia. Plants of both the large- and small-seeded genotypes grown from seed with a small Mo content (<1.41 g Mo seed-1) had a smaller nodule weight, accumulated less N and produced less seed. The viability of seed with a small Mo content was lower (germination up to 50% less) than that of seed with a large Mo content.  相似文献   
2.
Summary Cultures of Azolla sp. ST-SI, A. microphylla BR-GI, A. mexicana BR-GL, A. caroliniana WT-V, and A. filiculoides BR -H were grown in N-free International Rice Research Institute growth medium in the glasshouse at 38±1 °C (day) and 25±1 °C (night) under a light intensity of 350 Em2s–1 for 27 days. Biomass, chlorophyll contents and nitrogenase activity (acetylene reduction assay) were recorded on the 19th and 27th day. For comparison the same parameters were studied in Azolla spp. under normal growth conditions at 26±1 °C (day) and 19±1 °C (night). Azolla sp. STSI and A. microphylla BR-GI had produced a larger biomass by the 19th and the 27th day of incubation than A. caroliniana WTV and A. filiculoides which showed poor growth. Under normal growth conditions A. caroliniana WTV and A. filiculoides BRH produced less biomass than the other Azolla spp. cultures tested. A. mexicana BR-GL had a higher total chlorophyll content in both incubation periods than A. caroliniana WT-V and A. filiculoides BR-H. The N content was high in Azolla sp. ST-SI, A. microphylla BR-GI, and A. mexicana BR-GL compared with the low N content of A. filiculoides BR-H and A. caroliniana WT-V. At the higher temperature (38±1 °C/25±1 °C) Azolla sp. ST-SI and A. microphylla BR-GI consistently showed a higher growth rate than A. filiculoides BR-H and A. caroliniana WTV, while the growth rate of A. mexicana BR-GL was intermediate.The study was carried out at C.F. Kettering Research Laboratory, Yellowsprings, OH - 45387, USA  相似文献   
3.
Summary Acetylene reduction activity by Azospirillum brasilense, either free-living in soils or associated with wheat roots, was determined in a sterilised root environment at controlled levels of O2 tension and with different concentrations of mineral N. In an unplanted, inoculated soil nitrogenase activity remained low, at approximately 40 nmol C2H4 h-1 per 2kg fresh soil, increasing to 300 nmol C2H4 h-1 when malic acid was added as a C source via a dialyse tubing system. The N2 fixation by A. brasilense in the rhizosphere of an actively growing plant was much less sensitive to the repressing influence of free O2 than the free-living bacteria were. An optimum nitrogenase activity was observed at 10 kPa O2, with a relatively high level of activity remaining even at an O2 concentration of 20 kPa. Both NO inf3 sup- and NH inf4 sup+ repressed nitrogenase activity, which was less pronounced in the presence than in the absence of plants. The highest survival rates of inoculated A. brasilense and the highest rates of acetylene reduction were found in plants treated with azospirilli immediately after seedling emergence. Plants inoculated at a later stage of growth showed a lower bacterial density in the rhizosphere and, as a consequence, a lower N2-fixing potential. Subsequent inoculations with A. brasilense during plant development did not increase root colonisation and did not stimulate the associated acetylene reduction. By using the 15N dilution method, the affect of inoculation with A. brasilense in terms of plant N was calculated as 0.067 mg N2 fixed per plant, i.e., 3.3% of the N in the root and 1.6% in the plant shoot were of atmospheric origin. This 15N dilution was comparable to that seen in plants inoculated with non-N2-fixing Psudomonas fluorescens.  相似文献   
4.
Summary Differences between isogenic uptake hydrogenase (HUP) mutants of Bradyrhizobium japonicum in terms of nodule efficiency, N2 fixation and N incorporation into various plant parts were studied in a monoxenic greenhouse experiment in order to confirm previous results with soybeans and beans inoculated with various HUP+ and HUP strains. The HUP+ revertant PJ17-1 of a HUP mutant (PJ17) of strain USDA DES 122 showed a completely restored relative efficiency (100% versus 78±2% for the HUP mutant), higher nodule efficiency (N2 fixed per g nodules), higher ureide-N transport rates, higher N contents in pods and higher N harvest indices. All these observations confirm previous experiments with HUP+ and HUP strains.  相似文献   
5.
Summary Following screening, selection, characterization, and symbiotic N2 fixation with 12,5, 25.0, and 40.0 mg N kg–1 in normal and saline-sodic soils, only two Phaseolus vulgaris genotypes (HUR 137 and VL 63) and two Rhizobium spp. strains (ND 1 and ND 2) produced maximum nodulation, nitrogenase activity, plant N contents, and grain yields in saline-sodic soil, with 12.5 mg N kg–1, compared with the other strains. However, interactions between strains (USDA 2689, USDA 2674, and ND 5) and genotypes (PDR 14, HUR 15, and HUR 138) were significant and resulted in more nodulation, and greater plant N contents, nitrogenase activity, and grain yields in normal soils with 12.5 mg N kg–1 compared with salt-tolerant strains. Higher levels of N inhibited nodulation and nitrogenase activity without affecting grain yields. To achieve high crop yields from saline-sodic and normal soils in the plains area, simultaneous selection of favourably interacting symbionts is necessary for N economy, so that bean yields can be increased by the application of an active symbiotic system.  相似文献   
6.
Summary In three field trials conducted during the summer season of 1986, 1987 and 1989 in an alkaline soil, 17 accessions of annual Sesbania spp. were evaluated for nodulation, N2 fixation (acetylene reduction assay), dry weight of roots and shoots, woody biomass production, and nutrient uptake. At 50 days after sowing all the accessions were effectively nodulated (average 36.4 root nodules plant-1) with a high nodule score (3.4). There was a lot of variation in nodule volume and mass and in acetylene reduction activity but not in N content (5.2%). N uptake in shoots, roots and nodules averaged 639, 31, and 13 mg plant-1, respectively, and much of the fixed N remained in shoots. Accessions of S. cannabina complex performed better than others. S. rostrata had poor root nodulation but exhibited excellent stem nodulation (300 nodules plant-1) even though not inoculated with Azorhizobium sp. Average concentrations of N, P, K, S, Ca, and Mg in the shoots were high, at 3.2, 0.28, 1.5, 0.28, 1.5, and 0.4% respectively, and Na was low (0.15%), reflecting the usefulness of Sesbania spp. as an integrated biofertilizer source. Green matter production was 26.0 Mg ha-1 (5.9 Mg dry matter) and N uptake was 158 kg ha-1, 54 days after sowing. Average woody biomass of six accessions at maturity, 200 days after sowing, was high (19.9 Mg ha-1), showing its potential for shortterm firewood production. Total nutrient uptake for production of woody biomass (200 days of growth) was no more demanding than growing the plant to the green-manuring stage of 50–60 days' growth.  相似文献   
7.
Summary In a series of short-term experiments root systems of young sorghum and millet plants inoculated with N2-fixing bacteria were exposed to 15N2-enriched atmospheres for 72 h. The plants were grown in a normal atmosphere for up to 22 days after the end of the exposure to allow them to take up the fixed N2. Environmental conditions and genotypes of sorghum and millet were selected to maximise N2-fixation in the rhizosphere. Detectable amounts of fixed N (> 16 g/plant) were rapidly incorporated into sorghum plants grown in a sand/farmyard manure medium, but measurable fixation was found on only one occasion in plants grown in soil. N2 fixation was detectable in some experiments with soil-grown millet plants but the amounts were small (2–4 g/plant) and represented less than 1 % of plant N accumulated over the same period. In many cases there was no detectable 15N2 incorporation despite measurable increases in ethylene concentration found during an acetylene reduction assay.Published as ICRISAT Journal Article No. JA 740  相似文献   
8.
Summary The Rhizobium-legume symbiosis in arid ecosystems is particularly important for locations where the area of saline soils is increasing and becoming a threat to plant productivity. Legumes, which are usually present in arid ecosystems, may be adapted to fix more N2 under saline conditions than legumes grown in other habitats.Legumes are known to be either sensitive or moderately resistant to salinity. The salt sensitivity can be attributed to toxic ion accumulations in different plant tissues, which disturb some enzyme activities.Among the basic selection criteria for salt-tolerant legumes and rhizobia are genetic variability within species with respect to salt tolerance, correlation between accumulations of organic solutes (e. g., glycine betaine, proline betaine, and proline) and salt tolerance, and good relationships between ion distribution and compartmentation, and structural adaptations in the legumes.Salt stress reduces the nodulation of legumes by inhibiting the very early symbiotic events. Levels of salinity that inhibit the symbiosis between legumes and rhizobia are different from those that inhibit the growth of the individual symbionts. The poor symbiotic performance of some legumes under saline conditions is not due to salt limitations on the growth of rhizobia.Prerequisites for a successful Rhizobium-legume symbiosis in saline environments include rhizobial colonization and invasion of the rhizosphere, root-hair infection, and the formation of effective salt-tolerant nodules.The possibility of exploring the Rhizobium-legume symbiosis to improve the productivity of saline soils is reviewed in this paper.  相似文献   
9.
Summary Hydrogenase activities and N2-fixing capacities of soybean nodules (Glycine max. cv. Hodgson), inoculated with strains ofBradyrhizobium japonicum andRhizobium fredii from different geographical regions, were measured after 35 days of culture under controlled conditions. Of the strains tested, 47% induced nodules with bacteroids which recycled H2. The data obtained suggest that H2-recycling ability is not a major factor influencing early N2-fixation which depends essentially on the precocity and intensity of the initial nodulation.  相似文献   
10.
Summary Fifty-six isolates of Rhizobium and Bradyrhizobium spp. (Cajanus) were studied for their plasmid profile and N2-fixation efficacy. One to three plasmids were reproducibly detected in all the Rhizobium spp. strains but no plasmid was detected in the Bradyrhizobium spp. strains. Rhizobium sp. strain P-1 was mutagenized by Tn5 and three nod and six nod+fix were screened for symbiotic parameters. Neomycin-sensitive mutants were isolated by elevated temperatrue (40°C) from tranconjugants carrying Tn5 insertions. The high temperature cured these mutants from the single large plasmid present in the parent strain P-1. All these cured mutants were nod, indicating that the genes for nodulation were present on this plasmid, which is readily cured at a high temperature (40°C). The high temperature in the semi-arid zones of Haryana could be responsible for the low nodulation of pigeonpea because the plasmid carrying the nodulation genes is cured at 40°–45°C giving rise to non-nodulating mutants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号