首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   574篇
  免费   73篇
  国内免费   38篇
林业   8篇
农学   43篇
基础科学   32篇
  201篇
综合类   284篇
农作物   29篇
水产渔业   5篇
畜牧兽医   29篇
园艺   33篇
植物保护   21篇
  2023年   16篇
  2022年   29篇
  2021年   21篇
  2020年   34篇
  2019年   25篇
  2018年   25篇
  2017年   27篇
  2016年   34篇
  2015年   36篇
  2014年   29篇
  2013年   37篇
  2012年   43篇
  2011年   46篇
  2010年   40篇
  2009年   34篇
  2008年   42篇
  2007年   33篇
  2006年   20篇
  2005年   19篇
  2004年   9篇
  2003年   17篇
  2002年   9篇
  2001年   10篇
  2000年   6篇
  1999年   6篇
  1998年   5篇
  1997年   1篇
  1996年   4篇
  1995年   1篇
  1994年   5篇
  1993年   5篇
  1992年   4篇
  1991年   2篇
  1990年   5篇
  1989年   3篇
  1957年   2篇
  1955年   1篇
排序方式: 共有685条查询结果,搜索用时 15 毫秒
1.
  【目的】  研究添加脲酶/硝化抑制剂的高效稳定性尿素在黑土和褐土中的作用效果,为科学合理选择抑制剂提供科学依据。  【方法】  以春玉米为试材,采用东北典型的黑土和褐土进行盆栽试验。供试抑制剂包括N-丁基硫代磷酰三胺 (NBPT)、3, 4-二甲基吡唑磷酸盐 (DMPP)、2-氯-6 (三氯甲基)-吡啶 (CP)。试验设不施氮肥 (U0)、施普通尿素 (U),和在尿素中添加NBPT、DMPP、CP、NBPT+DMPP、NBPT+CP、DMPP+CP,共8个处理。在玉米苗期、大喇叭口期、灌浆期、成熟期取样,测定土壤尿素态氮、NH4+-N和NO3–-N含量,计算硝化抑制率,玉米抽雄吐丝后测定棒三叶叶面积和叶绿素含量,收获后测定玉米生物量、氮素含量等指标。  【结果】  1) 与普通尿素 (U) 相比,黑土上添加NBPT+DMPP、NBPT+CP处理玉米苗期土壤中NH4+-N含量分别提高1.32、0.96倍,NO3–-N含量分别降低1.35、1.04倍,玉米叶面积增加,叶片叶绿素含量增高。褐土中,添加DMPP+CP处理在玉米苗期土壤NH4+-N含量提高3.09倍,NO3–-N含量降低1.49倍,玉米叶绿素含量提高1.61倍,显著高于对照和单一抑制剂处理。2) 在黑土中,与普通尿素相比,添加NBPT+DMPP、NBPT+CP处理的玉米籽粒产量分别增加1.64和2.18倍;氮素表观利用率分别提高3.02和3.34倍,高于其他处理。褐土添加DMPP+CP处理的籽粒产量增加1.41倍,氮素表观利用率提高4.98倍,高于其他处理。  【结论】  在黑土中,尿素配施NBPT+DMPP、NBPT+CP可以有效抑制NH4+-N向NO3–-N的转化,增加玉米氮素吸收量,提高氮肥利用率,从而获得较高的产量,是黑土栽培玉米施用氮肥的最佳选择。褐土中,DMPP+CP的硝化抑制率显著高于添加单一抑制剂,有效抑制铵态氮的硝化作用,减少氮素损失,增加玉米氮素吸收量,从而使玉米高产,因此,添加DMPP+CP是制备褐土玉米专用高效稳定性尿素的最好选择。  相似文献   
2.
研究冬小麦和苜蓿不同种植模式在不同生长期内土壤氮素的变化特征,以期为粮草混播种植模式提供参考依据。依托 2014年在晋西南开展的田间试验,于 2017和 2018年研究了小麦单播、苜蓿单播和小麦苜蓿混播的作物产量以及土壤剖面氮素特征。结果表明:(1)两个试验年份内小麦苜蓿混播增加了作物生物量且小麦植株茎叶和籽粒氮含量均高于小麦单播;相比任一单作,小麦苜蓿混播显著提高了作物植株氮积累总量。(2)种植方式影响表层(0~ 30 cm)土壤硝态氮含量,3月春季返青时苜蓿单播高于小麦单播和混播处理,6月麦收时小麦单播和混播均高于苜蓿单播;苜蓿单独生长期(10月)200 cm深土壤剖面硝态氮含量依次为小麦单播 >混播 >苜蓿单播。不同生长时期小麦单播硝态氮随土壤剖面垂直淋失并于土壤深层大量累积,而小麦苜蓿混播后缓解了硝态氮的垂直淋失现象。(3)小麦返青时 0~ 30 cm土层苜蓿单播土壤铵态氮含量略高于小麦单播和混播,小麦地休耕苜蓿单独生长期 200 cm深小麦单播铵态氮含量低于苜蓿单播和混播。(4)越冬期(前一年 10月~ 3月)小麦苜蓿混播土壤无机氮得到了累积,小麦苜蓿共生期(3~ 6月)土壤无机氮处于消耗阶段,麦收后苜蓿单独生长期(6~ 10月)无机氮又得到了补充。  相似文献   
3.
腐植酸对土壤氮素转化及氨挥发损失的影响   总被引:6,自引:3,他引:3       下载免费PDF全文
采用培养试验方法研究腐植酸添加量(0、5%、10%、25%、50%、75%HA)对土壤氮素转化及其损失的影响。结果表明:与CK对比,1)腐植酸可显著降低氨挥发量,各处理平均降低12.08%,且随着腐植酸添加量的增加对氨挥发的抑制作用增大;2)培养前期,5%~50%添加量范围内腐植酸能提高土壤脲酶活性,至5 d时平均提高了35.13%,75%腐植酸添加量的土壤脲酶活性降低了13.23%,但培养后期(14 d后)腐植酸处理均能提高土壤脲酶活性;3)添加腐植酸使土壤铵态氮含量增加,且随着腐植酸添加量的增大,土壤铵态氮含量呈增加趋势,至培养112 d时,腐植酸处理的土壤铵态氮含量平均增加了39.63%;4)在整个培养期间,腐植酸处理的土壤表观硝化率平均降低了17.20%,且腐植酸的添加量越大,土壤表观硝化率越低。这些结果充分表明腐植酸能够调控土壤氮素去向、减少氮素损失,对提高氮肥利用率具有重要意义。  相似文献   
4.
不同原料生物炭对铵态氮的吸附性能研究   总被引:7,自引:3,他引:4  
为探讨不同原料生物炭对铵态氮吸附量及吸附机制,以花生壳、玉米秆、杨木屑和竹屑为原料,在500℃下充N_2保护热解制备生物炭,通过电镜扫面图(SEM)与傅立叶红外光谱图(FTIR)表征NH_4~+-N在生物炭表面的吸附特征,结合批量平衡吸附试验,对比研究不同原料生物炭对NH_4~+-N的吸附性能。结果表明:吸附后生物炭表面附着颗粒或粉末物质,孔隙被填充,表面变得较为平坦。四种生物炭表面分布的-OH、-C=O、-C-O,以及花生壳生物炭与玉米秆生物炭表面的-CH_3、-CH_2、-O-参与了吸附;Langmuir方程可以较好地拟合四种生物炭对NH_4~+-N的等温吸附;吸附均在50 min内达到平衡,伪二级动力学方程均可以较好地描述生物炭对NH_4~+-N的动力学吸附过程;在溶液pH=7.00条件下,初始浓度为800 mg·L~(-1)的体系中,四种生物炭对NH_4~+-N的最大吸附量为9.5~15 mg·g~(-1),吸附能力大小为花生壳生物炭玉米秆生物炭竹屑生物炭杨木屑生物炭。研究表明,生物炭表面含氧官能团对吸附NH_4~+-N起到决定性作用,吸附为单分子层吸附,且由快速反应所控制,四种生物炭中吸附性最好的是花生壳生物炭。  相似文献   
5.
全波长扫描式多功能读数仪(酶标仪)是一种多通道光学系统的分光光度计,将靛酚蓝比色法与酶标仪相结合,建立了酶标仪-靛酚蓝测定水中铵态氮的方法,方法检出限为0.046 mg/L。方法的加标回收率在90.7%~101.8%之间,该方法与连续流动分析仪-水杨酸分光光度法相比,两者测定数据之间回归直线方程为Y(连续流动分析仪-NH_4~+-N)=1.052 4X(酶标仪-NH_4~+-N)-0.009,相关系数R=0.976 1**(n=32,P0.01)。5个水样重复6次测定,测定结果的相对标准偏差均小于3%。全波长扫描式多功能读数仪(酶标仪)结合靛酚蓝比色法测定重现性好,结果准确,快速方便,可用于水样中铵态氮含量测定。  相似文献   
6.
《土壤通报》2019,(6):1442-1446
为研究滨海盐碱地中在灌溉水的淋洗作用下,其对土壤盐分和尿素氮空间分布及运移变化的淋洗特征的影响,于2018年在温室内设置土柱模拟~(15)N同位素示踪试验,以山东东营垦利县滨海盐碱土为研究对象,试验设3个处理,分别为干旱(W0)、20%正常田间持水量(W1)、无淋洗液浸出状态下过量灌溉(W2)。研究结果表明:在0~30 cm土层,各处理土壤含盐量在淋洗作用下随着土层深度而递增,过量灌溉(W2)处理淋盐程度更大。~(15)N标记的尿素施入土壤后,W0处理组、W1处理组浅层(10~20 cm)土层土壤~(15)N丰度达到峰值,而W2处理组土壤~(15)N丰度峰值位于深层(20~30 cm)土层,尿素氮淋洗向下运移且灌水量的增加促进土壤氮素的向下运移;灌水量的增加提高了土壤铵态氮含量(P 0.05),W0、W1、W2处理组土壤铵态氮含量平均值分别为:(2.29±0.10)mg kg~(-1)、(2.36±0.11)mg kg~(-1)、(2.57±0.08)mg kg~(-1);尿素中的氮素最终以硝态氮形态因灌溉水淋洗作用而向下大量运移,W1处理组10~20 cm土壤硝态氮含量显著增加,而W2处理组在20~30 cm土壤硝态氮含量达到峰值(34.13±0.38)mg kg~(-1)。灌溉水形成的水盐运动促进了土壤氮素的运移。研究结果对滨海盐碱地的氮素综合管理具有重要的理论和实践意义。  相似文献   
7.
黔东南州稻田土壤硝态氮和铵态氮含量评价   总被引:1,自引:0,他引:1  
[目的]研究黔东南州稻田土壤硝态氮和铵态氮的含量。[方法]对从黔东南州采集的146份稻田土壤的硝态氮和铵态氮含量进行测定,研究各县市硝态氮和铵态氮含量、分布及速效氮的分级情况,对黔东南州稻田土壤肥力进行评价。[结果]黔东南州各县市间稻田土壤硝态氮和铵态氮含量差异较大,硝态氮平均含量最高的为镇远县,最低的为岑巩县;铵态氮平均含量最高的为三穗县,最低的为麻江县。速效氮主要分为3、4、5、6等级,黔东南州绝大部分稻田土壤速效氮处于5、6等级。[结论]黔东南州90%以上稻田土壤速效氮含量偏低。  相似文献   
8.
米槠人工林土壤微生物群落组成对凋落物输入的响应   总被引:1,自引:0,他引:1  
全球气候变化显著影响森林凋落物数量,进而会对土壤微生物群落造成影响。本研究以亚热带米槠人工林为研究对象,探究不同凋落物量输入处理(凋落物去除、凋落物加倍、对照)下,森林土壤微生物群落组成的变化。结果表明:与去除凋落物相比,凋落物加倍后0~10 cm土壤铵态氮(NH4^+-N)、硝态氮(NO3^--N)、全氮(TN)、有效磷(AP)含量分别显著增加了30.30%、49.66%、12.77%和13.90%。与对照相比,凋落物加倍与去除处理土壤微生物生物量碳(MBC)和氮(MBN)含量分别显著增加和下降(P<0.05),但凋落物加倍与去除处理间无显著差异。凋落物加倍处理下土壤丛枝菌根真菌(AMF)、革兰氏阳性菌[G(+)]、革兰氏阴性菌[G(-)]、放线菌(ACT)、真菌(F)丰度和总磷脂脂肪酸(TPLFA)含量分别比去除凋落物处理的土壤高68.35%、63.35%、82.65%、69.02%、40.56%和65.85%,而土壤革兰氏阳性菌与阴性菌比值、真菌与细菌比值则分别降低11.64%和26.67%。冗余度分析表明,铵态氮是影响该人工林土壤微生物群落组成的最主要环境因子。可见凋落物输入量变化改变了土壤养分有效性,进而显著影响了土壤微生物群落组成,这对进一步深入探究全球气候变化对亚热带森林土壤养分循环的影响具有重要意义。  相似文献   
9.
铁改性稻壳生物炭对铵态氮的吸附效果研究   总被引:2,自引:0,他引:2  
  【目的】  研究稻壳生物炭和3种铁改性稻壳生物炭对铵态氮的吸附特性,为其作为添加剂进行炭基肥料的开发提供参考。  【方法】  以稻壳为原料,在500℃无氧条件下热解制备稻壳生物炭(RBC),并采用3种工艺制备铁改性稻壳生物炭 (FDRBC、FWRBC和FWBC)。利用比表面积测定仪 (BET) 和扫描电镜 (SEM)、X射线衍射 (XRD)、傅立叶红外光谱 (FT-IR) 等技术对稻壳炭和3种铁改性稻壳炭进行物理性质表征。以稻壳生物炭和3种铁改性稻壳生物炭为材料进行铵态氮吸附试验,采用Langmuir和Freundlich方程对稻壳炭和3种铁改性稻壳炭的等温吸附数据进行拟合;并分别用准一级动力学模型和准二级动力学模型对吸附数据进行拟合。  【结果】  1) 经过铁改性,稻壳炭比表面积降低了2.4%~63.7%,孔径平均提高了2.8%~319.2%,pH均降低到5左右;2) FWBC和FWRBC在pH为6时,对NH4+-N的吸附量最大,FDRBC和RBC在pH为7时,对NH4+-N的吸附量最大;3) Langmuir吸附等温方程能够很好地拟合稻壳炭和3种铁改性稻壳炭对铵态氮的吸附数据,RBC、FDRBC、FWRBC和FWBC对铵态氮的最大吸附量分别为2.22、8.82、4.67和3.67 mg/g;4) 稻壳炭和3种铁改性稻壳炭对铵态氮的吸附行为符合准二级动力学方程。  【结论】  供试稻壳炭和3种铁改性稻壳炭对铵态氮的吸附主要为单分子层吸附,以化学吸附方式为主。铁改性处理提高了稻壳炭的孔径,降低了pH。对铵态氮的吸附能力以FDRBC最优,用其制备新型肥料可提高肥料的保肥供肥能力。  相似文献   
10.
【目的】本文研究添加不同种类硝化抑制剂的高效稳定性氯化铵氮肥在黑土中的施用效果,旨在筛选出适合旱作黑土的高效稳定性氯化铵态氮肥。【方法】在氯化铵中分别添加硝化抑制剂3,4-二甲基吡唑磷酸盐 (DMPP)、双氰胺 (DCD)、2-氯-6-三甲基吡啶 (Nitrapyrin,CP)、氨保护剂 (N-GD) 和1种氮肥增效剂 (HFJ) 及其组合,制成9种稳定性氯化铵氮肥。以不施氮肥 (CK) 和施普通氯化铵 (CK-N) 为对照,以9种稳定性氯化铵为处理进行了等氮量盆栽试验。在玉米苗期、大喇叭口期、灌浆期和成熟期测定了土壤中铵态氮和硝态氮含量,在玉米成熟期测定植株生物量、籽粒产量和氮素含量,计算铵态氮肥的表观硝化率、硝化抑制率、氮肥农学效率、氮肥偏生产力。【结果】1) 与CK-N处理相比,9个处理均显著提高玉米的产量,HFJ的效果均为最显著,可增加玉米籽粒产量3.99倍,提高氮肥吸收利用率4.98倍,显著高于8个硝化抑制剂处理 (P < 0.05)。CP + DMPP和CP + DCD处理提高玉米籽粒产量1.90~2.11倍,两个处理之间无显著差异;CP + DMPP玉米生物量显著高于CP处理,而与DMPP和DCD处理无显著差异;CP + DMPP玉米氮肥吸收利用率显著高于CP和DMPP处理,显著提高3.71倍 (P < 0.05);2) CP + DMPP和CP + DCD土壤中铵态氮含量提高2.09~2.42倍,且显著高于CP、DMPP和DCD处理 (P < 0.05),而硝态氮含量和土壤表观硝化率均显著降低24%和66%~68%,与CP和DCD处理存在显著差异 (P < 0.05);苗期CP + DMPP和CP + DCD硝化抑制率高达23.9%~24.3%,显著高于CP和DCD (P < 0.05)。【结论】在黑土中,氯化铵中添加硝化抑制剂组合的硝化抑制率显著高于添加单一抑制剂,能够有效减缓土壤中铵态氮向硝态氮的转化,减少土壤中氮素损失,降低环境污染。CP + DMPP组合玉米的氮肥吸收利用率显著高于CP + DCD组合。氮肥增效剂HFJ显著增加玉米的氮素吸收量,提高氮肥利用率,从而使玉米获得高产并获得较高的收获指数和经济系数。因此,综合考虑产量和抑制硝化作用等因素,黑土区氯化铵作为玉米生产用氮肥时,建议首选添加氮肥增效剂HFJ来保证作物的高产和氮肥高利用率,也可以添加硝化抑制剂组合CP + DMPP,或者CP + DCD制备稳定性氯化铵来提高氯化铵的增产效果和氮肥利用率,减少氮素损失,降低环境污染。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号