首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1946篇
  免费   54篇
  国内免费   107篇
林业   362篇
农学   85篇
基础科学   285篇
  106篇
综合类   680篇
农作物   59篇
水产渔业   23篇
畜牧兽医   314篇
园艺   156篇
植物保护   37篇
  2024年   2篇
  2023年   37篇
  2022年   38篇
  2021年   37篇
  2020年   55篇
  2019年   48篇
  2018年   25篇
  2017年   53篇
  2016年   109篇
  2015年   90篇
  2014年   107篇
  2013年   97篇
  2012年   126篇
  2011年   105篇
  2010年   110篇
  2009年   105篇
  2008年   115篇
  2007年   78篇
  2006年   72篇
  2005年   68篇
  2004年   46篇
  2003年   76篇
  2002年   54篇
  2001年   50篇
  2000年   57篇
  1999年   39篇
  1998年   34篇
  1997年   27篇
  1996年   25篇
  1995年   35篇
  1994年   21篇
  1993年   23篇
  1992年   33篇
  1991年   38篇
  1990年   26篇
  1989年   24篇
  1988年   6篇
  1987年   4篇
  1986年   2篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1976年   1篇
  1958年   1篇
排序方式: 共有2107条查询结果,搜索用时 15 毫秒
1.
以马尾松(Pinus massoniana Lamb.)素材(对照)及热处理材(处理温度分别为145、160、175℃)为研究对象,参照LY/T 2054—2012《锯材机械加工性能评价方法》对其机械加工性能进行评价,利用元素分析仪和傅立叶变换红外光谱仪(FTIR)对其化学组成成分进行了定性分析,探索高温热处理对马尾松人工林木材机械加工性能的影响.结果表明,175℃以下热处理,对马尾松木材综合机械加工性能的影响不大;但对单项机械加工性能的影响各有不同,主要表现为:热处理后,马尾松木材的刨削、铣削性能得到提高,而砂削、钻削、车削、开榫性能则随着处理温度的升高表现出先降低后升高的规律.通过对热处理材化学组成成分的定性分析,发现在145~175℃的热处理过程中,木材组分中的羟基数量减少,半纤维素部分降解,结晶度增加,且木材中C元素质量分数呈增加趋势,而H、O元素质量分数呈降低趋势.高温热处理会在一定程度上改变马尾松木材的机械加工性能,影响到其后续加工利用.  相似文献   
2.
纤维诱导对乳清浓缩蛋白(WPC)起泡性具有明显的改善作用。通过向乳清浓缩蛋白中添加一定量成熟的纤维,研究热处理过程中纤维诱导对乳清浓缩蛋白起泡性的影响。结果发现,纤维诱导的乳清浓缩蛋白起泡性远高于乳清浓缩蛋白自发形成纤维的起泡性。在诱导过程中,纤维可以快速提高乳清浓缩蛋白的起泡性,尤其在诱导前期(0~2 h);纤维诱导乳清浓缩蛋白1 h和2 h的起泡能力分别是乳清浓缩蛋白自发形成纤维的1.36倍和1.41倍。成熟纤维可快速诱导乳清浓缩蛋白形成纤维,提高聚合速率并缩短纤维形成时间。同时,聚合驱动力也在诱导前期(0~2 h)快速变化,加速纤维形成。  相似文献   
3.
[目的]研究实木地暖地板用木材经不同工艺热处理后的颜色变化规律,改善热处理后基材颜色较深问题。[方法]以3种树种栎木(Quercus mongolica Fisch.ex Turcz.)、桦木(Betula alnoides Buch.-Ham.ex D.Don)和柚木(Tectona grandis Linn.f.)为研究对象,采用常压湿空气为传热介质,以温度120~200℃、时间2~6 h的处理条件对其进行热处理,通过色饱和度差(ΔC~*)、色相差(ΔH~*)、总体色差(ΔE~*)等指标对热处理后木材颜色变化进行表征。[结果]木材材性对ΔC~*影响较大,不同木材的ΔC~*变化规律有较大差异。随着热处理温度的升高和时间的延长,栎木、柚木ΔC~*减小,颜色趋于暗淡;桦木在140~180℃的温度范围内ΔC~*增大,颜色较热处理前更鲜明。3种木材的ΔH~*和ΔE~*均呈增加趋势,但ΔE~*变化规律较ΔH~*更明显,可通过工艺参数来准确调控。[结论]栎木色相变化的临界温度为180℃,桦木、柚木的临界温度为160℃。  相似文献   
4.
以芒果中多酚氧化酶(PPO)和过氧化物酶(POD)为研究对象,探讨加热与超声波作用对多酚氧化酶和过氧化物酶钝化效果的影响。结果表明:单独的加热(≤50℃)或0℃低温超声波(403.19、601.25、799.31 W/cm2)处理酶液,随着时间的延长,酶活性逐渐下降,但酶残留活性均在75%以上;而超声波与热处理结合能使POD和PPO显著失活,在45℃,799.31 W/cm2条件下处理15 min后,PPO、POD残余酶活力分别降至38.66%、14.43%。试验结果表明:超声波和热处理结合对芒果PPO和POD的钝化有协同效应。  相似文献   
5.
采用高温湿热饱和蒸汽对人工林樟子松进行处理,探讨了含水率和含脂率的变化规律。结果表明:樟子松在高温湿热处理过程中脱脂率和脱脂速度与温度和含水率有关。对比常规干燥处理可以发现,高温湿热处理的脱脂速度约为常规干燥的2.58倍,脱脂率约1.41倍;经高温湿热处理后的木材沿厚度方向上含脂率和含水率分布较均匀,脱脂效果更好。  相似文献   
6.
本试验旨在研究基于NRC模型下不同程度热处理豆渣的营养价值与分子结构功能团特征的相关关系。利用烘箱对豆渣进行不同温度(100、115、130℃)下不同时间(2、4、6 h)的热处理,采用NRC(2001)模型预测不同程度热处理豆渣的代谢蛋白质产量、可消化养分含量和能值,同时利用傅里叶变换红外光谱(FTIR)技术分析不同程度热处理豆渣的分子结构功能团特征,并分析它们之间的相关关系。结果表明:1)随着温度的升高以及加热时间的延长,豆渣的代谢蛋白质产量、可消化养分含量和能值呈现出降低的趋势。2)温度和时间对豆渣的分子结构功能团存在显著的互作效应(P<0.05)。3)酰胺Ⅰ带与结构性碳水化合物峰面积比值(AmideⅠ_STCHO)和酰胺Ⅰ带与总碳水化合物峰面积比值(AmideⅠ_CHO)可以共同作为预测因子估测瘤胃可降解蛋白质(R^2=0.35,P<0.05)、过瘤胃蛋白质(R^2=0.35,P<0.05)、小肠可吸收过瘤胃蛋白质(R^2=0.33,P<0.05)和瘤胃可降解蛋白质可合成菌体蛋白质(R^2=0.35,P<0.05)含量。综上所述,不同程度热处理豆渣的分子结构功能团与其代谢蛋白质产量、可消化养分含量和能值之间存在相关关系,初步证明可以利用分子结构功能团对热处理豆渣的营养价值进行快速分析和估测。  相似文献   
7.
将蒸汽爆破甘薯渣粉加入到小麦粉中,测定混合粉面团动态流变学特性及混合粉面条的蒸煮特性、质构特性和微观结构等指标。结果表明:随着蒸汽爆破甘薯渣粉添加量的增加,面团的储能模量(G′)、损耗模量(G″)逐渐增加, tan δ(G″/G′)1且蒸汽爆破甘薯渣粉添加量小于8%,面团的tan δ变化差异性不显著;随着汽爆甘薯渣粉添加量的增加,面条的吸水率、断条率、蒸煮损失率均增加,混合粉面条硬度降低,咀嚼性、回复性逐渐减小;蒸汽爆破甘薯渣粉添加量由0增至6%,混合粉面条的弹性显著升高;汽爆甘薯渣粉添加量低于6%,混合粉面条的面筋网状结构与对照无明显变化;汽爆甘薯渣粉添加量为8%的混合粉面条感官品质最佳。  相似文献   
8.
为获得湿热处理制备马铃薯抗性淀粉的最适工艺参数,以抗性淀粉得率为考察指标,研究淀粉含水量、湿热处理温度和湿热处理时间对抗性淀粉得率的影响。在单因素试验的基础上进行正交优化,确定了制备马铃薯抗性淀粉的最佳工艺条件为:淀粉含水量30%,湿热处理温度90 ℃,热处理时间90 min。在此条件下制得的抗性淀粉得率为26.63%。淀粉经过湿热处理后仍然保持偏光十字,为颗粒型抗性淀粉。  相似文献   
9.
热处理是南极磷虾粉加工的一个重要环节,磷虾在热处理过程的特性变化对最终虾粉的得率和品质有较大的影响。为了研究南极磷虾热处理过程中不同中心温度下虾品质变化规律,采用常压水煮加热方式,设置热处理温度固定为100℃对南极磷虾进行热处理,以热处理损失率、固形物含量、脂肪含量、蛋白质组分含量、虾青素为品质评价指标,分别测定当中心温度在30℃~80℃区间范围、温度梯度5℃时南极磷虾的品质变化情况。结果表明:热处理达到不同中心温度对南极磷虾的品质有较大影响(P0.05)。随着中心温度的升高,磷虾的热处理损失率和固形物含量先逐渐增加后减少并趋于稳定,脂肪含量不断增加;水溶性蛋白和盐溶性蛋白的含量大致呈随着中心温度的上升而减少,仅在55℃~65℃略微升高后继续缓慢下降;虾青素含量在温度30℃~55℃时随温度升高缓慢下降,55℃之后下降速率加快;虾粉得率随温度升高呈不断下降趋势。综合考虑各项指标,认为南极磷虾常压水煮加热时中心温度应尽量控制在55℃~60℃。  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号