首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   263篇
  完全免费   62篇
  综合类   325篇
  2022年   10篇
  2021年   7篇
  2020年   6篇
  2019年   9篇
  2018年   11篇
  2017年   15篇
  2016年   26篇
  2015年   27篇
  2014年   30篇
  2013年   25篇
  2012年   25篇
  2011年   22篇
  2010年   26篇
  2009年   26篇
  2008年   22篇
  2007年   13篇
  2006年   18篇
  2005年   6篇
  2002年   1篇
排序方式: 共有325条查询结果,搜索用时 62 毫秒
1.
基于SVR的多维时间序列分析及其在农业科学中的应用   总被引:12,自引:0,他引:12       下载免费PDF全文
 【目的】建立一种基于结构风险最小、既反映样本集动态特征又体现环境因子影响的高精度非线性多维时间序列预测方法。【方法】耦合支持向量机回归(SVR)和带受控项的自回归模型(CAR),以留一法基于MSE最小原则实施模型定阶和变量筛选,以一步预测法检验新模型SVR-CAR的有效性,并通过强制汰选给出各保留变量对预测的相对重要性次序。【结果】3个农业科学实例验证表明,SVR-CAR在7种参比模型中预测精度最高,且可更精细地反映样本集的非线性动态特征,依各保留变量对预测的相对重要性次序及其动态变化可赋予保留变量部分解释能力。【结论】SVR-CAR是一种基于SVR并融合时间序列分析和回归分析的非线性多维时间序列分析方法,具结构风险最小、非线性、适于小样本,能有效克服过拟合、维数灾和局极小,非线性定阶和非线性筛选变量,自动选择核函数及其相应参数,泛化推广能力优异、预测精度高等诸多优点,在农业科学、生态学、经济学等领域有广泛应用前景。  相似文献
2.
基于SVM分类的预警系统   总被引:10,自引:1,他引:9  
将SVM理论与预警理论相结合,提出了一个基于SVM的宏观经济预警系统,并应用于我国棉花产量增长率的预警。与已有预警系统比较,该预警系统在预警概化能力上有着明显的优势。  相似文献
3.
基于计算机视觉的水稻叶部病害识别研究   总被引:9,自引:1,他引:8       下载免费PDF全文
【目的】文章重点分析了病健交界特征参数、病害识别流程对提高病害识别准确率的影响。实现水稻叶部15种主要病害的准确识别,尤其是相似病害的判断。【方法】(1)病斑图像获取:水稻叶部病害图像来源包括水稻大田、病害图册和病害数据库,文中选用改进的mean shift图像分割算法提取病叶图像中的病斑并根据相关方程获取病斑特征信息。(2)特征参数的选择与设计:首先选取一至三阶颜色矩和颜色直方图作为病害的颜色特征参数,选取球状性、偏心率和不变矩作为病斑的形状特征参数,选取角二阶矩、对比度和相关作为病斑的纹理特征参数;然后针对相似病斑误报率高的问题提出一种病健交界特征参数,通过病斑内部、边缘和外围颜色上的差异描述该特征,并根据3个区域相互间归一化颜色直方图的欧氏距离计算该项特征参数,该参数可以用于描述病斑与健康部分交界处的特征。(3)病害识别流程的设计:根据病害在颜色、形状、纹理、病健交界4个特征上差异的显著程度设计完成病害识别流程,流程中首先通过颜色特征识别病害,对于通过颜色特征无法识别的病害再通过形态特征识别,倘若形态特征依然无法识别则通过纹理和病健交界特征进行最终识别。(4)病害识别模型的建立:将病害数据分成两部分,一部分用于建立模型,另一部分用于模型的验证;利用LibSVM程序包完成建模,其中svmtrain函数用于建立支持向量机模型,Grid程序用于优化参数,svmpredict函数用于对模型进行验证。【结果】15种水稻叶部病斑可以从复杂的背景中分割出来,并可快速准确的被识别,平均识别准确率为92.67%,平均漏报率为7.00%,最大漏报率和误报率分别为15.00%和25.00%;病健交界特征参数引入后,识别准确率提高了14.00%,平均漏报率降低了7.50%,漏报率最大降幅为20.00%,误报率最大降幅为65.00%;与用所有特征参数直接进行病害识别相比,采用本文提出的识别流程进行病害识别的准确率提高了12.67%,漏报率降低了9.33%,一些病害的漏报率和误报率降幅达30.00%以上;在识别流程各步骤中,颜色特征识别环节的平均准确率为96.71%,漏报率和误报率均未超过10.00%;形态特征识别环节的平均准确率为94.17%,漏报率和误报率均未超过15.00%;纹理和病健交界特征识别环节的平均准确率为91.50%,漏报率和误报率均未超过25.00%。【结论】利用mean shift图像分割算法可以准确分割水稻叶部病斑;基于支持向量机模型的分类方法可以对15种水稻病斑准确分类;论文中提出的病健交界特征参数以及病斑识别流程均提高了病斑的识别准确率;病健交界特征参数对提高一些相似病害的识别精度效果显著;将这些方法相结合可以有效对水稻常见叶部病害进行识别,为水稻病害的田间智能诊断提供技术支撑。  相似文献
4.
牛肉胴体质量等级评定是牛肉依质论价的基础。其中,大理石花纹是评定牛肉质量等级的主要指标。由于人工评定存在许多缺点,采用机器视觉来判定牛肉胴体质量等级是一种很好的方法。研究了一种基于图像处理和支持向量机(SVM)分类的牛肉大理石花纹等级评定技术。首先应用阈值分割、形态学腐蚀及膨胀的方法来分割牛肉图像中的有效区域(用于大理石花纹等级评定的区域);然后用矩方法来提取图像特征参数,最后用支持向量机的模式识别技术来构造牛肉大理石花纹等级分类模型。结果表明:该模型对我国国家标准规定的牛肉大理石花纹等级的正确识别率分别达到95.9%(一级)、89.2%(二级)、93.2%(三级)、100%(四级)。研究的牛肉大理石花纹等级的机器视觉检测方法是可行的,这为牛肉等级的在线检测装置设计提供了条件。  相似文献
5.
基于叶片图像多特征融合的观叶植物种类识别   总被引:4,自引:0,他引:4  
叶片图像特征提取对于植物自动分类识别有着重要的研究意义.本文以观叶植物叶片为研究对象,综合提取叶片图像的颜色、形状和纹理特征,基于支持向量机(SVM)原理提出了基于图像分析的观叶植物自动识别分类方法.通过对50种观叶植物样本图像进行训练和识别,与BP神经网络和KNN识别方法进行比较,本文所采用的SVM分类器的识别率能够达到91.41%,取得了较好的识别效果.  相似文献
6.
支持向量机(SVM)方法在降水分类预测中的应用   总被引:4,自引:0,他引:4  
支持向量学习机(SVM)是基于统计学习理论的模式分类器,将SVM方法应用于降水异常的分类预测中尚属首次。主要利用1958—2003年逐月的74个环流特征量、NINO 3,NINO 4海温指数、相关区域海平面气压、500 HPA、100HPA有关指数资料等,分别建立了四川盆地5片区降水距平百分率大于50%(特多)和小于-50%(特少)的2个SVM推理模型,并进行了降水分类预测试验和2005年1-3月实际预测,结果显示出所建SVM推理模型的Ts评分较高,具有一定的预测能力,展示了SVM的优越性和推广前景,可在短期气候预测业务中参考应用。  相似文献
7.
多环芳烃致癌性预测模型比较研究   总被引:3,自引:0,他引:3  
基于量化参数和拓扑指数,分别采用主成分分析和相关分析进行变量筛选,运用留一交叉检验法,引入模型预测性能的评价体系和指标,比较了支持向量机(SVM)、Fisher判别法和K-最近邻法等方法构建的多环芳烃致癌性二值分类预测模型,结果显示SVM要好于其他方法,说明SVM算法具有较强的稳健性和良好的泛化能力,能够用于多环芳烃致癌性的二分类和预测。  相似文献
8.
农业灌溉用水量的LS-SVM预测模型研究   总被引:3,自引:0,他引:3  
谢芳  唐德善 《安徽农业科学》2010,38(19):10273-10275,10288
农业灌溉用水量预报是灌区制定水资源调度计划、合理高效分配水量的科学依据。针对灌溉用水量影响因素复杂非线性的特点,鉴于支持向量机算法的诸多优势,建立了基于最小二乘支持向量机的灌溉用水量预测模型,将该模型用于塔河流域T灌区灌溉用水量预测,并与人工神经网络方法预报结果比较,表明该方法具有泛化能力强、误差小等特点。  相似文献
9.
 【目的】利用遥感技术获取大范围水稻种植面积是遥感技术在农业领域的主要应用方向之一。本研究的目的是探索利用多尺度遥感数据复合测量水稻种植面积的方法。【方法】以SPOT5数据的水稻识别结果作为样本,构建图像相似性指数,通过支持向量机(SVM)混合像元分解模型,对MODIS-EVI时间序列数据进行水稻的种植面积测量。【结果】通过江苏省邳州市的试验研究得出:(1)在野外经验支持下,从MODIS-EVI时间序列数据中构建的水稻种植相似性指数可以有效反映水稻在整个研究区的空间分布情况;(2)利用图像相似性选取训练样本,能有效地提高MODIS-EVI数据的水稻种植面积的测量精度,当图像相似性指数越小,即图像相似性越高,提取的水稻种植面积也越准确;(3)通过与随机样本测量结果对比分析,基于相似样本的测量方法有着更高的稳定性;(4)该方法在不同种植结构分区内有着相似的总量精度与像元精度变化规律,均能获得较高的测量精度。【结论】基于相似样本的水稻种植面积测量方法,有助于发挥MODIS长时间序列优势,提高水稻种植面积遥感测量精度和稳定性,可以作为替代随机选取样本的方法之一。  相似文献
10.
【目的】定量、准确地监测盐渍土,对其防治和农业可持续发展至关重要,论文旨在明确黄河口区土壤盐分及其主要离子的特征光谱,建立适用于该区域的土壤盐渍化定量分析模型,提高其定量分析的精度和稳定性。【方法】首先以山东省垦利县为研究区,于2014年10月 5—9日野外采集代表性土样96个,对土样风干后,采用土壤化学分析方法室内分析盐分及其主要离子(Cl-、Na+、Ca2+)含量,并采用美国ASD Fieldspec 3光谱仪测定土样可见/近红外高光谱数据,对光谱反射率进行去噪、一阶导数变换等预处理;然后基于盐分及其主要离子不同含量的样本光谱分析盐分及其主要离子的光谱响应,在此基础上,对样本的土壤盐分及其主要离子含量与反射率的一阶导数光谱进行逐波段的相关分析,按照相关系数高且显著的原则,选取各自的敏感波段,再根据敏感波段的交叉情况选取集中波段为特征波段,进而选取特征波段中具有极值相关系数的波段作为显著特征波段,综合确定表征土壤盐分及其主要离子(Cl-、Na+、Ca2+)的特征光谱;最后分别采用多元线性回归(multiple linear regression,MLR)、支持向量机(support vector machine,SVM)和随机森林(random forest,RF)方法构建土壤盐分及其主要离子的定量高光谱分析模型。【结果】研究区土壤盐分及其主要离子(Cl-、Na+、Ca2+)含量的光谱曲线形状和走势整体一致;土壤盐分及其主要离子(Cl-、Na+、Ca2+)的光谱响应谱区为1 320—1 495、1 790—1 920、2 120—2 290 nm;基于相关分析的土壤盐分及其主要离子的敏感谱区为1 490—1 520、1 890—1 930 nm;最后综合光谱响应及相关分析确定土壤盐分及其主要离子的特征波段为1 493、1 801、1 911和2 289 nm,显著特征波段为1 493和1 911 nm。模型结果显示基于2个显著特征波段反射率一阶导数的模型精度均与4个特征波段的模型精度相当,表明显著特征光谱作为盐分及其主要离子的特征光谱进行其定量分析的有效性。比较3种建模方法,RF模型的预测效果最好,SVM模型次之,而MLR模型精度最低;对于盐分、Cl-和Na+,3种方法构建的模型均可有效地用于其定量分析,精度较高且稳定,然而Ca2+预测精度还有待提高。通过综合比较分析,基于显著特征波段(1 493和1 911 nm)反射率一阶导数构建的随机森林(RF)模型对盐分、Cl-和Na+均具有较好的估测精度和稳定性,也可用于Ca2+的定量估测。【结论】基于光谱响应及相关分析综合确定盐分及其主要离子的显著特征光谱(1 493和1 911 nm反射率一阶导数),进而采用随机森林方法构建盐分及其主要离子的定量估测模型,适用于黄河口区土壤盐渍化信息的有效提取。  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号