排序方式: 共有162条查询结果,搜索用时 46 毫秒
1.
基于遥感反演作物冠层温度的作物生长模拟和预报 总被引:13,自引:0,他引:13
利用作物冠气温差可以计算作物生长水分胁迫系数.用遥感信息估算作物冠层温度并且利用气象站的气温资料,通过冠气温差计算作物水分胁迫系数,并引入作物生长模拟模型,就实现动态和连续的作物监测及预报作物产量.本文对建立遥感-作物模拟复合模型的基本原理进行了探讨,并提出建立遥感-作物模拟复合模型所涉及的计算方法,但整体研究方法还有待进一步的验证. 相似文献
2.
【目的】研究棉花冠层光谱对不同叶面积指数(LAI)的响应,建立棉花LAI光谱反演模型。【方法】利用2003~2004年采集的棉花光谱与LAI的246组数据,分析LAI与冠层反射率光谱和反射率一阶微分光谱间的定量关系。【结果】当LAI大于2.5后不同LAI棉花群体光谱反射率在可见光波段趋于饱和;LAI与可见光波段和短波红外波段(水分吸收带除外)光谱反射率呈显著负相关,与近红外波段高光谱反射率呈显著正相关;LAI与棉花反射率一阶微分光谱主要在蓝边(523~531 nm)、黄边(570~576 nm)、红边(700~755 nm)形成3个相关系数高台区,均达极显著水平,其中红边区的相关性最高。棉花红边位置固定,分别在718 nm和723 nm,且以 723 nm处对LAI更敏感。在反演棉花LAI的高光谱参数中VI (660、800)、VI (550、800)、VI (500、800)、VI (670、800)、Sdy (570~573 nm)、SDr (714~755 nm)、D723、Dr 估算LAI相对误差低于30%,RSME小于0.6,其中VI (600、800)、VI(550、800)两个参数估算水平最高,相对误差分别为21.7%与21.0%,RMSE分别为0.416与0.419;利用SDr与SDr/SDb分别对LAI大于1.0 与小于1.0 的棉花群体反演,能显著提高LAI的估算水平。【结论】应用高光谱分析方法能够提取棉花冠层特征光谱信息,构建LAI高光谱反演参数,建立估算模型,并且利用包含不同光谱参数的分段模型可以进一步提高LAI反演精度。 相似文献
3.
应用遥感数据反演针叶林有效叶面积指数研究 总被引:7,自引:0,他引:7
以红壤丘陵典型区千烟洲及其周边为研究区,利用陆地卫星TM图像数据和同期野外实测的37个针叶林样地有效叶面积指数数据,分析了遥感植被指数与湿地松、杉木林、马尾松和针叶林总体之间的相关关系,进而分别建立了遥感植被指数与不同林型针叶林有效叶面积指数间的线性与非线性回归模型.研究表明,遥感植被指数与不同林型针叶林有效叶面积指数存在较好的相关性,但不同林型之间的相关系数存在一定差异;所建立的针叶林有效叶面积指数遥感反演模型以三次曲线回归方程拟合精度最高. 相似文献
4.
利用遥感红边参数估算夏玉米农学参数的可行性分析 总被引:6,自引:0,他引:6
分析夏玉米农学参数、红边参数以及两者之间的相关性,结果表明:可利用红边位置(REP)来反演叶片绿度值(SPAD),利用归一化的吸收深度(ND672)、吸收特征面积(Area672)和红边宽度(Lwidth)来分别反演叶绿素a、叶绿素b、叶绿素a+b以及叶绿素a/b含量;利用一阶微分光谱最大值(FD_Max)和Area672来反演类胡萝卜素含量和类胡萝卜素含量/叶绿素a含量.从而,构建了以红边参数为自变量的农学参数的反演模型,为生产上利用遥感技术大区域,无破坏、实时快速地监测夏玉米的生长状况以及进行营养诊断提供了重要的技术依据. 相似文献
5.
冬小麦条锈病严重度高光谱遥感反演模型研究 总被引:6,自引:0,他引:6
通过人工田间诱发不同等级小麦条锈病,在不同生育期测定染病冬小麦冠层光谱及其病情指数(DI).把冠层光谱一阶微分数据与相应的DI进行相关分析,采用单变量线性和非线性回归技术,建立小麦DI的估测模型,并利用不同品种小麦样本对模型精度进行可靠性检验.结果表明:DI与一阶微分在432~582 nm、637~701 nm以及715~765 nm区域内有极显著相关性,以红边峰值区(725~735 nm)一阶微分总和与绿边峰值区(521~530 nm)一阶微分总和的比值为变量的线性模型估测DI精度最高,且其对小麦品种相对不敏感.上述研究结果对利用高光谱遥感监测农作物病害及其严重程度都具有实际应用价值. 相似文献
6.
【目的】氮素是作物生长发育过程中最重要的营养元素之一,研究叶氮含量反演的有效光谱指标设置,为应用高光谱植被指数反演作物叶氮含量,以及作物的实时监测与精确诊断提供重要依据。【方法】以冬小麦为例,选取涵盖冬小麦全生育期不同覆盖程度225组冠层光谱与叶氮含量数据,通过遥感方法建立模型,模拟了不同光谱指标,即中心波长、信噪比和波段宽度对定量模型的影响,通过模型精度评价指标决定系数(coefficient of determination,R~2)、根均方差(root mean square error,RMSE)、平均绝对误差(mean absolute error,MAE)、平均相对误差(mean relative error,MRE)和显著性检验水平(P0.01)确定最优模型及最佳指标,分析光谱指标对叶氮含量定量模型反演的敏感性和有效性。【结果】反演冬小麦叶氮含量的最佳植被指数为MTCI_B,与实测叶氮含量的相关性最好(R~2=0.7674,RMSE=0.5511%,MAE=0.4625%,MRE=11.11个百分点,且P0.01),对应的最佳指标为中心波长420 nm、508 nm和405 nm,波段宽度1 nm,信噪比大于70 DB;高覆盖状况反演的最优指数为RVIinf_r(R~2=0.6739,RMSE=0.2964%,MAE=0.2851%,MRE=6.44个百分点,且P0.01),最优中心波长为826 nm和760 nm;低覆盖状况反演的最优指数为MTCI(R~2=0.8252,RMSE=0.4032%,MAE=0.4408%,MRE=12.22个百分点,且P0.01),最优中心波长为750 nm、693 nm和680 nm;应用最适于高低覆盖的植被指数RVIinf_r和MTCI构建的联合反演模型(R~2=0.9286,RMSE=0.3416%,MAE=0.2988%,MRE=7.16个百分点,且P0.01),明显优于最佳单一指数MTCI_B;模拟Hyperion和HJ1A-HSI传感器数据,联合反演模型精度(R~2为0.92—0.93,RMSE在0.37%—0.39%,MAE为0.285%左右,MRE约为7.00个百分点)明显优于单一植被指数反演精度(R~2为0.79—0.81,RMSE为0.63%—0.66%,MAE为0.455%左右,MRE约为10.90个百分点)。【结论】利用高光谱植被指数可有效实现作物叶氮含量反演,作物叶氮含量定量反演对不同光谱指标—中心波长、信噪比和波段宽度,具有较强敏感性。应用多指数联合反演模型,可显著提高反演精度,并且联合反演模型在不同高光谱传感器下有一定普适性。 相似文献
7.
【目的】考虑到利用单一植被指数(VI)反演叶面积指数(LAI)时,存在着不同程度的饱和性和易受土壤背景影响的问题,提出通过分段的方式选择敏感植被指数形成最佳VI组合以提高LAI反演的精度。【方法】通过ACRM辐射传输模型模拟数据,结合地面实测光谱数据,选择常用的植被指数进行土壤敏感性分析以及饱和性分析确定LAI的分段点,并在此基础上分段选择最佳植被指数形成组合VI来实现LAI的最终反演,并利Landsat5 TM开展区域条件下冬小麦LAI反演应用。【结果】以LAI=3是较为适宜的分段点,利用植被指数最佳分段组合OSAVI(LAI≤3)+TGDVI(LAI>3)可在一定程度上有效克服土壤影响因素以及饱和性问题,联合反演的结果明确优于单一植被指数反演精度。【结论】通过分段选择最佳植被指数形成联合VI可以有效提高LAI反演精度。 相似文献
8.
资源三号遥感卫星影像的生物量反演研究 总被引:3,自引:0,他引:3
研究了北京市森林生物量遥感估测模型的构建和合理性判断。建立森林生物量模型所需的各种数据,包括2012年的资源三号卫星影像数据和实测样地调查数据。采用9格法提取的遥感影像信息,其中影像的纹理因子作为建模因子之一,与光谱因子、地形因子一起与实地样地数据建立生物量模型,进行生物量反演,通过精度分析,分别建立整个北京市针叶林和阔叶林的森林生物量反演模型,其相关系数分别为0.82、0.71,拟合估测精度分别为76.75%、80.02%,为提高林业调查的效率与精度提供一种方法。 相似文献
9.
为了准确揭示奶牛场的甲烷排放特征,在我国首次采用国际上最新的反演式气体扩散技术与开路式激光仪相结合的研究方法,分别于2009年冬季和2010年春季测定了保定市某奶牛养殖基地甲烷的排放特征,测定期间养殖基地的动物总量平均为1 200头.结果表明,奶牛养殖场尺度的甲烷排放在冬季和春季均呈现出规律性的日排放特征,即养殖场甲烷日排放高峰出现在05:00、11:30和16:30,排放高峰的出现时间与上料时间基本吻合;冬季和春季试验期间该养殖场的反刍和粪尿甲烷总排放量分别为0.31 t·d-1和0.36t·d-1,养殖基地内整个牛群平均每头牛的反刍和粪尿甲烷日排放总量分别为0.26 kg·d-1和0.30 kg·d-1,春季的甲烷日排放量比冬季约高16.7%,初步揭示了奶牛场尺度甲烷排放的季节性差异. 相似文献
10.