首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   2篇
  国内免费   10篇
  6篇
综合类   9篇
畜牧兽医   2篇
植物保护   1篇
  2022年   1篇
  2020年   4篇
  2019年   4篇
  2018年   8篇
  2012年   1篇
排序方式: 共有18条查询结果,搜索用时 15 毫秒
1.
放牧是最主要的草地利用模式,直接或间接地影响草地物质循环和能量流动,放牧强度对草地的健康状况和演替方向起决定作用。本文基于40篇内蒙古草原放牧相关文献数据,通过meta分析探讨温带草原对放牧强度的响应特征。结果表明,与未放牧草地相比,轻度放牧草地对群落植物地上、地下生物量和土壤全氮和全磷含量无显著影响,而土壤有机碳、微生物生物量碳、细菌和真菌数量分别显著上升3.60%、7.80%、11.40%和10.83%(P<0.05);中度放牧下群落植物地下生物量和土壤微生物数量无显著变化,而地上生物量和土壤有机碳、全氮、全磷和微生物生物量氮含量分别显著降低21.62%、4.44%、2.15%、8.35%和6.76%(P<0.05);重度放牧下群落植物地上和地下生物量,土壤有机碳、全氮、全磷、微生物生物量碳含量,细菌和放线菌数量分别显著下降39.72%、16.30%、7.62%、6.46%、8.03%、8.76%、12.92%和18.27%(P<0.05)。以上结果表明轻度放牧有利于土壤肥力和草地生产力的保持和提升,而当放牧干扰超出一定的限度时,草地各项功能均显著下降而发生退化。本研究可为内蒙古温带草原的合理利用和适应性管理提供理论基础。  相似文献   
2.
3.
【目的】自然植被转变为农业用地显著影响土壤有机碳储量。青藏高原东南部地区森林或草地转换为农田的面积逐年增加,但其对土壤有机碳组分及周转特征的影响尚不明确。因此,阐明藏东南地区不同土地利用方式对土壤有机碳储量的影响程度和作用机制,可为该地区农业土地资源合理利用提供科学依据。【方法】采集藏东南地区长期耕作的农田(50年以上)及毗邻的自然森林和草地土壤,采用物理-化学联合分组技术以及稳定性碳同位素测定,分析3种土地利用方式下土壤有机碳组分的数量、碳含量的差异,探究不同有机碳组分周转差异及其对农田耕作的响应规律。【结果】农田0—20 cm表层土壤有机碳储量为(39.4±2.0) Mg C·hm~(-2),比自然森林的(81.5±8.5)Mg C·hm~(-2)和草地的(71.4±7.3)Mg C·hm~(-2)分别降低了约52%和45%。农田耕作导致粗颗粒有机质(cPOM)数量相对于自然植被降低了63.4%—70.8%,微团聚体(μagg)和黏粉粒(dSilt+Clay)的数量分别增加了10.0%—25.9%和65.7%—86.2%。农田土壤的有机碳含量与森林和草地土壤相比降低了51.7%—58.1%,其中不稳定性、物理稳定性和生物化学稳定性有机碳库分别降低79.8%—86.3%、72.4%—73.1%、32.4%—39.8%,且与总有机碳的变化显著正相关,但化学稳定性有机碳库没有显著变化。土地利用方式不同导致不同有机碳组分的C/N值和δ~(13)C值差异明显。农田土壤cPOM组分的C/N值(10.0±0.5)显著低于森林(13.5±0.4),而δ~(13)C值(-21.6±0.5)‰则显著高于森林土壤(-23.6±0.4)‰。微团聚体保护的颗粒有机质(iPOM)和难酸解组分(NH-dSilt+Caly和NH-μSilt+Clay)具有较低的δ~(13)C值(-25.3‰—-27.2‰),并且其C/N在农田土壤为8.4—9.4,显著低于森林土壤(13.5—15.9)。【结论】藏东南地区长期耕作的农田土壤有机碳储量相比于自然植被降低了约50%。农业耕作显著加速了不稳定颗粒有机质的周转,减少了稳定性有机碳组分如微团聚体保护的有机碳组分的形成,是导致土壤有机碳库明显下降的关键原因。因此,为有效降低农业耕作对土壤有机碳储量的负面影响,免耕和保护性耕作或可成为藏东南农耕区固碳增汇、维持该地区土地资源可持续利用的技术选择之一。  相似文献   
4.
青藏高原高寒草地生态系统的适应性管理   总被引:2,自引:0,他引:2  
青藏高原约有1/3的草地经历着不同程度退化,严重危害区域生产、生活和生态安全。草地退化是气候变化等自然因素和过度放牧等人为因素综合作用的结果,主要表现为植被群落结构失调、功能减弱、土壤理化性质恶化。目前,草地恢复的主要措施有围栏封育、人工建植、鼠虫害及毒杂草防除等,需根据不同草地退化情况,因地制宜,采取合理有效的治理方案。对退化草地进行恢复治理,协调高寒草地生态系统生态、经济和社会功能的关系,实现高寒草地的可持续利用,关系到生态安全、区域稳定和经济发展,主要应从宏观功能区划,畜牧业科学发展、政策法规和教育落实3个方面进行。高寒草地生态系统的适应性管理应以生态学理论为基础,实现草地资源的可持续利用和草地生态系统的保护与恢复。作为青藏高原高寒草地生态系统适应性管理的前期探索和阶段性总结,本专辑收录了关于青藏高原草地退化和恢复关键生态过程和机制等方面的研究成果,以期为高寒草地生态系统的保护和管理提供科学依据。  相似文献   
5.
【目的】以新疆玛纳斯河绿洲表层土壤质地数据为例,研究对数比转换方法在成分数据空间插值中的应用。【方法】采用加法、中心化和等角3种不同对数比转换方法,对土壤颗粒含量数据进行转换,针对数据中的零值不能进行对数比转换问题引入了零值替换方法,空间插值采用普通克里格法。【结果】零值替换后土壤颗粒之和仍为100%。基于对数比转换的插值结果满足土壤质地颗粒组成定和100%的要求,而对土壤颗粒单独插值不满足定和100%的要求。插值结果精度评价表明基于等角对数比转换方法的插值结果最优,但3种方法的结果差别甚小。【结论】零值替换方法的引入在不改变成分数据定和的前提下避免了零值不能进行对数比转换。基于对数比转换的普通克里格法满足成分数据空间插值的非负、定和、误差最小和无偏估计4个要求。  相似文献   
6.
不同施肥模式下西藏农田土壤质量的变化   总被引:1,自引:0,他引:1  
依据中国科学院拉萨高原生态试验站农田长期施肥试验的监测数据,分析了不同施肥模式(空白、羊粪、羊粪+化肥(羊+化)、化肥)8年后(2008~2015)对高原农田土壤质量部分指标(机械组成、土壤容重、有机质、p H和微生物量碳)的影响。结果显示,与单纯施用化肥的样地相比,施加了有机肥的羊粪和羊+化样地的农田土壤质量表现出了显著的变化:(1)增加了0~20 cm土层中的砂粒含量,降低了粉砂粒和粘粒含量;(2)0~10cm表层土壤容重分别降低10.1%和10.0%;(3)表层土壤中的有机质含量分别增加了72.8%和65.6%,同时土壤的p H保持在一个稳定的状态;(4)显著增加了农田土壤中的微生物量,在青稞的生长期以及收获后,农田土壤微生物量碳均表现为羊粪羊粪+化肥空白化肥。因此表明有机肥可以显著改善高原农田的土壤质量,在西藏地区应加大畜禽粪便等的归田。  相似文献   
7.
脲酶/硝化抑制剂双控下红壤性水稻土氮素变化特征   总被引:5,自引:2,他引:3       下载免费PDF全文
以红壤性水稻土为对象,设置大田试验处理:不施肥(CK)、单施氮肥(U)、氮肥配施0. 5%脲酶抑制剂N-丁基硫代磷酰三胺(NBPT)与1%硝化抑制剂3,4-二甲基吡唑磷酸盐(DMPP)(U+N/D)、氮肥配施1%NBPT与2%DMPP [U+2 (N/D)],研究4种施肥组合下双季稻土壤脲酶、土壤NH+4-N、田面水NH+4-N和NO-3-N的变化特征。结果表明,与CK和U处理相比,各施肥处理在施肥后第1~15 d,土壤脲酶活性、土壤NH+4-N、田面水NH+4-N含量增加,田面水NO-3-N含量无显著变化。与U+2 (N/D)处理相比,早稻中U+N/D处理的脲酶活性显著增加了0. 03~0. 70 mg·g-1,土壤NH+4-N含量显著增加了19. 11~61. 44 mg·kg-1,田面水NH+4-N含量显著增加了34. 48~40. 70 mg·L-1。相关分析表明,土壤NH+4-N与土壤脲酶、田面水NH+4-N均呈显著负相关,田面水NH+4-N与土壤脲酶、田面水NO-3-N均呈显著正相关(P 0. 05)。综上,与其他处理相比,U+N/D处理是在短期内有效提高土壤脲酶活性、土壤NH+4-N和田面水NH+4-N含量的最优处理,合理配施尿素及0. 5%脲酶抑制剂NBPT和1%硝化抑制剂DMPP能够显著提高NH+4-N供水稻吸收,减少氮素损失。  相似文献   
8.
【目的】施肥是影响农田土壤溶解性有机碳、氮的重要因子。探讨在不同利用方式、熟制、土壤pH等条件下长期施肥对土壤溶解性有机碳(DOC)、溶解性有机氮(DON)含量的影响,为农田土壤碳氮管理提供指导。【方法】收集2000—2019年已发表文献72篇,获得相对独立数据(510组DOC和208组DON),采用整合分析(Meta-analysis)方法定量分析不同利用方式、熟制和土壤pH下施肥对DOC和DON含量的影响。【结果】与不施肥相比,施肥均能显著提高土壤DOC和DON含量,其中施有机肥(单施或配施)的提高幅度(60%和93%)是化肥(13%和29%)的4.6倍和3.2倍。不同利用方式下,施肥能显著提高旱地土壤DOC和DON含量,且旱地施用有机肥提升土壤DOC和DON的幅度显著高于水旱轮作。不同熟制比较,一年一熟下施用有机肥后DOC含量提高85 %,显著高于一年两熟(38%);不同pH土壤比较,碱性土壤(pH>7.5)上施用有机肥后DOC和DON含量分别提高了85%和162%,显著高于6.5<pH<7.5的中性土壤(48%和70%)和pH<6.5 的酸性土壤(32%和61%)。【结论】施用有机肥(单施或配施)可显著提高DOC和DON含量,但其效果会因利用方式、熟制、土壤pH等的不同有较大差异,因此,有机肥的施用应综合考虑相应的土壤和环境条件。  相似文献   
9.
为修订有机肥料标准提供理论和参考依据,本研究设置3类有机肥模拟样品:(1)畜禽粪便有机肥:鸡粪有机肥(C1)、C1+化肥+煤矸石(C1-CF-M1)、C1+化肥+风化煤(C1-CF-M2)、C1+化肥+腐殖酸土(C1-CF-M3);(2)中草药渣(发酵完全,Z1)、Z1+化肥(Z1-CF)、中草药渣(发酵不完全,Z2)、Z2+化肥(Z2-CF);(3)玉米芯菌菇包(H1)、H1+化肥(H1-CF),并测定其总养分和水溶性养分含量及容重,以探究有机肥养分及品质评价指标的合理范围。结果表明:1)各供试有机肥全氮、全磷、全钾含量相等时,C1的水溶性氮、磷、钾含量最低(3.83、3.58、8.50 g·kg~(-1)),而添加化肥的有机肥样品(C1-CF-M1、C1-CF-M2、C1-CF-M3、Z1-CF、Z2-CF、H1-CF)的水溶性氮、磷、钾含量分别高于7.45、8.71、15.78 g·kg~(-1);2)正常发酵的有机肥(C1、Z1、H1)水溶性氮占全氮含量的16.48%~24.66%,水溶性磷占全磷含量的12.92%~22.19%,水溶性钾占全钾含量的19.48%~39.27%,水溶性有机质占总有机质含量的6.37%~9.80%,容重低于0.51 g·cm~(-3);而添加化肥的有机肥样品(C1-CF-M1、C1-CF-M2、C1-CF-M3、Z1-CF、Z2-CF、H1-CF)的水溶性氮占全氮含量的47.91%以上,水溶性磷占全磷含量的54.03%以上,水溶性钾占全钾含量的72.90%以上;C1-CF-M1、C1-CF-M2、C1-CF-M3处理的水溶性有机质占总有机质含量的1%以下,容重高于0.69 g·cm~(-3);3)未发酵完全的处理Z2,其水溶性氮占全氮含量的13.93%以下,水溶性磷占全磷含量的10.37%以下,水溶性钾占全钾含量的21.94%以下,水溶性有机质占总有机质含量的2.29%,容重低于0.51 g·cm~(-3)。因此,供试有机肥均达到农业行业标准(NY 525-2012)的前提下,进一步检测其水溶性养分含量以及容重,可为农业行业标准(NY 525-2012)修订提供多元检测方法和理论依据。  相似文献   
10.
【目的】气候变暖对小麦生长发育有重要影响。然而,中国不同气候区小麦生长发育对温度升高的响应程度仍未系统量化。因此,急需阐明不同气候区增温及不同时段增温对小麦产量及发育期持续时间的影响程度,揭示小麦产量及发育期对增温的响应规律。【方法】本文搜集了1990-2017年间已发表的关于中国小麦全生育期田间持续增温条件下小麦产量变化的21篇文献,运用整合分析(Meta-analysis)量化田间不同增温幅度及不同时段增温对中国小麦产量及生育期的影响程度,系统阐明其在不同气候区的差异及规律。【结果】(1)亚热带季风区增温(0-3℃)显著增加小麦产量、千粒重和穗粒数,其平均增幅分别为8.2%、6.3%和4.7%;温带季风区增温(0-3℃)显著增加小麦产量、穗粒数和穗数,其平均增幅分别为6.8%、3.9%和5.5%,而温带大陆性气候区增温(0-3℃)显著降低小麦产量、千粒重和穗粒数,其平均降幅分别为10.2%、5.9%和8.3%。其中,亚热带季风区增温0-2℃,小麦产量显著提高了8.5%,而增温2-3℃时,小麦并未增产;温带季风气候区小麦增产愈为明显,当增温2-3℃时小麦的增产幅度达14.5%;相反,在温带大陆性气候区增温0-2℃和2-3℃时,小麦分别显著减产10.1%和15.9%。(2)亚热带季风区和温带大陆性气候区增温(0-3℃)小麦全生育期持续时间分别缩短了3.3%和7.1%,相反,在温带季风区,增温并未明显改变小麦全生育期持续时间;与此同时温带大陆性气候区和温带季风气候区的生殖期持续时间并无明显变化,而亚热带季风区小麦生殖生长持续时间却显著增加(8.7%)。(3)总体来看(季风气候区所有独立研究结果)夜间增温0-2℃和2-3℃对小麦产量有显著影响,小麦分别增产10.5%和15.0%。【结论】田间增温会显著影响中国粮食主产区小麦产量以及发育期持续时间,但不同气候区及不同时段增温对小麦生长和发育的影响不同。本研究结果可为未来气候变化新态势下中国粮食主产区种植制度优化与合理布局提供科学依据。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号