首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69篇
  免费   23篇
  国内免费   45篇
基础科学   1篇
  79篇
综合类   54篇
农作物   1篇
畜牧兽医   1篇
园艺   1篇
  2023年   7篇
  2022年   10篇
  2021年   14篇
  2020年   14篇
  2019年   15篇
  2018年   30篇
  2017年   16篇
  2016年   11篇
  2015年   15篇
  2014年   3篇
  2013年   2篇
排序方式: 共有137条查询结果,搜索用时 15 毫秒
1.
近35年红壤稻区土壤肥力时空演变特征—以进贤县为例   总被引:1,自引:0,他引:1  
【目的】明确红壤稻区典型县域农业生产中土壤养分的变化特征以及当前土壤肥力水平,为红壤稻田土壤培肥改良提供依据。【方法】通过数据收集和野外采样分析得到江西省进贤县1982年、2008年和2017年3个时期稻田耕层土壤属性的数据,统一选取土壤pH、有机质、碱解氮、有效磷和速效钾作为土壤综合肥力评价指标,首先对3个时期各项肥力指标进行常规统计和差异性分析,采用主成分分析找出不同时期肥力差异的关键因子并确定权重,通过隶属度函数得到各项肥力指标的隶属度值,将各项肥力指标的权重和隶属度值加乘得到土壤综合肥力指数,最后结合土壤各项肥力指标和综合肥力指数的GIS空间分布图探究该区域稻田土壤肥力时空演变特征。【结果】1982—2017年进贤县稻田土壤有机质、碱解氮、有效磷和速效钾均呈不同程度的上升趋势,土壤pH呈下降趋势。1982、2008和2017年3个时期进贤县土壤pH的平均值分别为5.9、5.1、4.8,年均下降0.03个单位;35年来土壤pH整体由西部向东南和西北下降速率逐渐减低,2017年99%的稻田土壤处于酸性水平(4.5—5.5)。35年间稻田土壤有机质含量的平均值由28.1 g·kg-1上升至36.8 g·kg-1,1982—2008年和2008—2017年土壤有机质年均增加速率分别为0.21和0.31 g·kg-1,2017年土壤有机质含量在30—40 g·kg-1之间的稻田占比达94%,1982—2017年土壤有机质整体由东北向西南上升速率逐渐降低。1982—2017年土壤有效磷含量的平均值由7.0 mg·kg-1上升至32.1 mg·kg-1,2017年进贤县以土壤有效磷含量在20—40 mg·kg-1的稻田为主,占比75%。1982—2017年稻田土壤速效钾累积缓慢,1982—2008年和2008—2017年土壤速效钾年均增加速率分别0.58和0.53 mg·kg-1,2017年进贤县稻田土壤速效钾含量平均值为73.2 mg·kg-1。稻田土壤碱解氮在1982—2008年和2008—2017年两个阶段增长均呈先快后慢的趋势,前后两个阶段的年增长速率分别为1.24和0.29 mg·kg-1,1982—2017年进贤县土壤碱解氮含量东南地区上升速率高,西北地区上升速率低。1982、2008和2017年进贤县稻田土壤综合肥力指数的平均值分别为0.43、0.50和0.55。3个时期稻田土壤肥力指标综合得分分别为:碱解氮有效磷>pH>速效钾>有机质(1982年);pH>有效磷>速效钾>有机质>碱解氮(2008年);速效钾>有效磷>pH>碱解氮>有机质(2017年)。【结论】经过35年的长期耕作,进贤县稻田土壤肥力得到改善。当前进贤县稻田土壤仍存在碱解氮过量、速效钾亏缺、土壤酸化严重等问题。土壤碱解氮、pH和速效钾分别为1982年、2008年和2017年3个时期造成进贤县稻田土壤肥力空间分布差异性的关键因素。  相似文献   
2.
长期绿肥与氮肥减量配施对水稻产量和土壤养分含量的影响   总被引:16,自引:3,他引:13  
为探明湘南双季稻区绿肥还田下的氮肥适宜施用量,设计了始于2008年冬季开展的长期田间定位试验(2009-2017),研究绿肥与氮肥减量配施对双季稻的产量、氮肥农学效率、氮肥偏生产力以及2017年稻田耕层土壤养分含量的影响。共设计6个施肥处理:不施氮肥空白对照、仅紫云英、习惯施肥、紫云英与100%无机氮配施、紫云英与80%无机氮配施、紫云英与60%无机氮配施。结果表明:与习惯施氮量相比,绿肥结合习惯施肥以及绿肥与化肥氮减量20%~40%配施均能保持甚至提高2009-2017年稻谷周年产量,显著提高早、晚稻氮肥偏生产力和氮肥农学效率。绿肥与化肥氮减40%时,产量变异系数最低和产量可持续指数最高。试验9 a后,与2008年相比,稻田土壤有机质和全氮含量呈上升趋势。与习惯施肥相比,绿肥与化肥氮减量20%~40%能维持土壤磷素与钾素的供给。综合考虑,紫云英还田下,化肥氮减施40%仍能获得高产稳产,且氮肥利用率最高,产量稳定性最好,并可缓慢提高土壤肥力,是湘南双季稻种植区较好的施肥模式。  相似文献   
3.
水稻产量对长期不同施肥和环境的响应   总被引:1,自引:1,他引:1  
以开始于1982年的不同施肥长期定位试验为平台,选择氮磷钾肥(NPK)、有机肥(牛粪,M)、氮磷钾肥+有机肥(NPKM)、氮磷肥+有机肥(NPM)、氮钾肥+有机肥(NKM)和磷钾肥+有机肥(PKM)共6个处理,采用产量年际变化、变异系数(CV)、产量可持续指数(SYI)、肥料增产贡献率及AMMI模型对影响双季稻稻谷总产量稳定性的施肥处理、环境和二者互作进行综合分析,研究历年稻谷产量(1982—2012年)对长期不同施肥和环境的响应特征。结果表明:NPKM处理稻谷产量最高;在养分投入量相同的情况下,单施有机肥和单施化肥对于早稻产量的影响效果一致,但单施有机肥较单施化肥有利于提高晚稻稻谷产量。不同施肥处理稻谷产量CV随试验时间延长逐渐降低,有机无机配施相比较单施化肥能够减小产量CV,各处理晚稻产量的CV大于早稻,但其SYI值小于早稻。NPKM处理的SYI值最高,为0.51;M和NPK处理的SYI值分别为0.44和0.42。肥料对于产量的贡献率表现为:有机肥化肥氮化肥磷化肥钾。AMMI模型交互效应主成分(IPCA)表明,不同施肥处理在不同试验年份对环境的响应不一样。综合以上分析结果,氮磷钾完全肥基础上配施有机肥(NPKM)是该区域双季稻高产和稳产的最佳施肥措施。  相似文献   
4.
针对设施蔬菜生产不合理施用磷肥问题,采用3年定位试验,研究滴灌条件下施用不同量磷肥后,温室冬春茬黄瓜的日产量变化、光温响应,及其产瓜高峰期,明确养分需求最大效率期和适宜施磷量。共设3个施磷水平,分别为不施磷P0处理、推荐施磷量P1处理和农民常规磷量P2处理。P1处理磷量参考基础土壤Olsen-P测试值、土壤磷素丰缺指标和目标产量推荐,单季施用P2O5 300 kg · hm-2。P2处理磷量按照调查所得河北省设施黄瓜生产磷肥平均用量设计,单季施用P2O5 675 kg · hm-2。结果表明,(1)3年日产瓜量变化均符合二次曲线特征,产瓜高峰出现在定植后97 ~ 104 d,此时温室早8:00 ≥ 10 ℃的累计气温为1 389.4 ~ 1 849.6 ℃,累计日照时数为629.0 ~ 866.8 h;根据温室内外气温回归关系,估算该时期温室日均气温23 ~ 27 ℃、活动积温约1 650 ~ 2 050 ℃,该阶段即为冬春茬黄瓜养分需求最大效率期。(2)与P2处理相比,P1处理减施磷56%后磷素供应满足了黄瓜产量建成需求,3年产瓜高峰出现时期、高峰期产瓜量和总产量均无显著改变。(3)连续不施磷肥高产黄瓜果实成熟推迟,2009年P0较P2处理产瓜高峰推迟16 d,产瓜高峰形成时已接近拉秧期。综上,在华北平原地区光温条件下,温室冬春茬黄瓜养分需求最大效率期在5月下旬至6月上旬,满足该时期养分适量供应有利于提高肥料利用效率;在与供试条件相近的温室,冬春茬黄瓜目标产量170 t · hm-2时,P2O5施用量300 kg · hm-2(较农民常规施磷量减少50%以上)能保证产瓜高峰期不滞后,产量不降低。  相似文献   
5.
西部地区紫色土近30年来土壤肥力与生产力演变趋势分析   总被引:1,自引:0,他引:1  
【目的】 紫色土在我国分布范围广泛,面积约1889 × 104 hm2,近年来紫色土面临着土壤肥力和质量下降等问题。本研究以我国西部地区的8个紫色土长期定位试验监测点为对象,对近30年来紫色土的养分和生产力数据进行分析,以期探明农民长期常规施肥管理模式下紫色土肥力的演变特征,为土壤养分的管理和可持续利用提供科学性的指导。 【方法】 利用时间趋势分析和中值分析的方法,分别总结了紫色土土壤有机质 (SOM)、全氮 (TN)、有效磷 (AP)、速效钾 (AK)、pH、碳氮比以及小麦、玉米、甘薯产量在不同监测阶段的演变特征和总体变化趋势,分析了紫色土常规施肥管理模式下土壤养分和作物产量的变化趋势;运用主成分分析和冗余分析方法,分别对上述6个肥力因子和三种作物产量进行分析,探究了紫色土土壤肥力的主要贡献因子和紫色土作物产量的主要影响因子。 【结果】 与初始监测阶段相比,29年常规施肥下紫色土有机质和全氮含量无显著变化,但有效磷和速效钾含量均以不同程度增加。土壤有效磷含量在 2011—2016 监测阶段的平均值为15.34 mg/kg,比初始监测阶段 (6.10 mg/kg) 显著提高了151.4%;土壤速效钾含量在 2011—2016 年的平均值比初始监测阶段 (1988—1992年) 增加了17.23 mg/kg (提高了23.1%)。29年常规施肥管理模式下紫色土pH呈现显著的下降趋势,比初始监测阶段降低了0.24个单位。主成分分析结果表明,紫色土土壤肥力的两个决定因子是土壤有效磷和速效钾,主要障碍因素是较低的土壤全氮和有机质含量。冗余分析结果表明,影响紫色土整体作物产量的主要环境因子分别为土壤pH、有效磷和有机质含量。对小麦产量影响最大的肥力因子为土壤pH,对玉米产量影响最大的肥力因子为土壤有效磷,对甘薯产量影响最大的肥力因子为土壤速效钾。 【结论】 近29年来,在常规施肥管理模式下土壤有效磷和有效钾含量显著上升,一方面提高了玉米、甘薯生产力,但却导致了养分的不平衡,紫色土全氮含量和pH出现了下降,导致小麦产量出现下降风险。紫色土肥力的障碍因子是较低的土壤全氮和有机质含量。所以农民常规施肥不利于紫色土的培肥,应该注重平衡施肥,增施有机肥,在提高土壤磷和钾有效性的同时,保持土壤全氮和有机质的平衡。   相似文献   
6.
长期施肥对黄壤性水稻土有机碳矿化的影响   总被引:13,自引:0,他引:13  
以贵州省农业科学院内黄壤性水稻土长期(22年)定位施肥试验为对象,采用室内模拟培养试验研究了不施肥(对照,CK)、施化肥(NPK)、低量有机无机肥配施(0.5MNPK)、施牛粪(M)和常量有机无机肥配施(MNPK)对土壤有机碳矿化的影响。结果表明:NPK处理土壤有机碳含量(21.6 g kg~(-1))与CK处理(22.8 g kg~(-1))基本相同,而0.5MNPK、M和MNPK处理的土壤有机碳含量较CK处理分别提高了30.6%、72.9%和62.2%,其中,M和MNPK处理差异达显著水平(p0.05)。模拟培养条件下,CO2产生速率在培养的第2天达到最大值,然后迅速下降,而后缓慢下降(第4~24天),后期(第24~30天)趋于稳定;各处理土壤有机碳矿化速率大小依次为:MMNPK0.5MNPKCKNPK,各处理土壤有机碳矿化速率随时间的动态变化均符合对数函数关系(p0.01)。培养结束(30 d)时,各处理土壤有机碳累积矿化量为1.23~2.37 g kg~(-1),以M处理和MNPK处理较高,较CK处理(1.46 g kg~(-1))分别增加了62.6%和44.2%(p0.05);各施肥处理土壤有机碳的累积矿化率(土壤有机碳累积矿化量/土壤有机碳含量)较CK处理(6.4%)均有所下降,以M处理和MNPK处理下降较多,降幅分别为1.2%和0.9%。土壤有机碳累积矿化量随培养天数的动态变化可以用一级动力学方程拟合(p0.01),模拟结果表明,CK处理土壤潜在可矿化有机碳量为1.55 g kg~(-1),与CK处理相比,NPK处理下降了11.6%,但差异不显著(p0.05),而有机肥处理(0.5MNPK、M和MNPK)有不同程度的提高(21.3%~73.6%),其中,M和MNPK处理提高幅度较大(p0.05);同时,MNPK处理能够提高土壤有机碳的周转速率,减少周转时间。上述结果指示黄壤性水稻土长期施用有机肥(0.5MNPK、M和MNPK)能够提高土壤有机碳的矿化速率,在促进土壤有机碳积累的同时降低其累积矿化率(单位有机碳矿化水平),增强土壤固碳能力。  相似文献   
7.
对电感耦合等离子体发射光谱法(ICP-OES)测定土壤有效锌含量的不确定度进行评定,分析了整个检测过程产生不确定度的来源,对称样量、浸提液体积、标准系列溶液配制、线性标准曲线拟合、测量重复性等产生的不确定度分量进行计算,量化给出扩展不确定度。待测土壤中有效锌含量最终结果表示:w(Zn)=(1.12±0.10)mg/kg,包含因子k=2,置信概率为95%。测量过程中,标准溶液制备所产生的不确定度最大。因此,在ICP-OES法测定土壤样品有效锌时应足够重视标准溶液制备与曲线拟合过程,以减小测量不确定度。本文研究结果为控制ICP-OES法测定土壤有效锌数据质量提供了理论依据。  相似文献   
8.
太湖港农场菜地土壤重金属含量特征 与风险评价   总被引:1,自引:0,他引:1  
为全面了解太湖港农场菜地土壤重金属污染状况,以Cd、Cu、Zn、Pb、Ni和Cr为研究对象,采用污染指数法及潜在生态风险指数法对重金属的污染程度和潜在生态风险进行了综合评价。结果表明,太湖港农场菜地土壤中重金属Zn、Cr、Ni、Cu、Pb、Cd的平均含量分别为86.25,65.39,34.44,29.51,26.93和0.78 mg/kg,Cd出现了99%的超标,其他均无超标现象。相关分析和主成分分析表明Cd、Ni、Cu、Zn、Pb和Cr具有相同来源的可能性较大。综合评价结果显示,太湖港农场菜地土壤重金属处于低污染水平,潜在生态危害程度较低。但其Cd的含量已达到轻度甚至中度污染水平,处于中度生态风险水平,需要在今后的农业生产中引起足够的重视。  相似文献   
9.
目的 长期不同施肥处理影响土壤磷库和土壤性质的变化。研究不同施肥处理下黑土磷的吸附解析特征及其与土壤性质的响应关系,为黑土合理施用磷肥,提高磷有效性提供理论依据。方法 本研究依托于公主岭黑土肥力长期定位试验,供试作物为玉米。选取不施肥(CK)、施氮、钾肥(NK)、氮磷钾平衡施肥(NPK)、氮磷钾+有机肥(NPKM)4个处理。取1990、2000和2010年的0—20 cm土层的土壤样品,分析土壤性质,测定磷的吸附解吸值,并用 Langmuir方程拟合了磷的吸附曲线,计算磷最大吸附量(Qmax)、磷吸附常数(K)、最大缓冲容量(MBC)、磷吸附饱和度(DPS)以及土壤易解吸磷(RDP)。结果 Langmuir吸附等温线方程能很好的拟合土壤吸附磷和相应的平衡溶液磷浓度曲线(R 2=0.93—0.99)。不同施肥处理磷吸附解吸特征参数具有明显的差异。随试验年限的增加,不同处理各特征参数变化不尽相同,与1990年相比,2010年不施磷处理(CK和NK),Qmax值分别增加了1.83和1.61倍,MBC值分别增加了0.80%和49.40%,DPS值分别降低了92.04%和87.50%,RDP值分别降低了20.00%和82.83%;NPK处理Qmax和DPS值分别增加了81.39%和90.74%,MBC和 RDP值分别降低了79.37%和48.57%;NPKM处理Qmax和MBC值分别降低了33.35%和78.52%,DPS和RDP值分别增加了11.36倍和1.48倍。施肥21年后,与CK和NPK处理相比,NPKM处理的Qmax值降低了64.66%和 49.52%,MBC值降低了81.87%和79.56%,DPS值增加了110和3.81倍,RDP值增加了4.36倍和78.57%。NPKM处理显著增加了土壤全磷(Total-P)、有效磷(Olsen-P)、有机质(SOM)和CaCO3含量,降低了比表面积,维持pH、游离铁铝氧化物值不变。冗余分析结果表明:SOM和Total-P是造成磷吸附解吸特征参数差异的主要因素,分别解释了全部变异的49.5%和18.7%(P<0.05)。 结论 长期有机无机配施可显著增加SOM和土壤中磷素累积,降低土壤对磷的吸附能力,增加土壤对磷的解吸,提高土壤磷的有效性,但同时显著提高了土壤磷吸附饱和度,易引起磷素流失的风险,对于NPKM处理应考虑有机肥与无机肥的投入量。  相似文献   
10.
湖南祁阳县土壤酸化主要驱动因素贡献解析   总被引:6,自引:1,他引:5  
【目的】以湖南省祁阳县为例,定量化分析整个县域不同土地利用方式下土壤的致酸因素,为我国的红壤酸化防治提供理论依据。【方法】通过搜集大量公开发表的文献、统计年鉴等,获取施肥量、主要农作物产量和林木生物量,以及地上部不同部位的养分含量等数据,基于经典的H +产生量的计算方法,解析氮循环过程、盐基离子吸收和酸沉降等三个关键过程的相对贡献大小。 【结果】对于整个祁阳县域,氮循环(N)过程致酸贡献率为66.5%(65.3%—68.8%),盐基(BC)吸收为33.0%(30.1%—34.4%),酸沉降则仅为0.5%(0.3%—1.7%)。无论是农田还是林地,氮循环过程都是产生H +的主要来源,是土壤酸化的主要驱动因素。3种土地利用方式中,单位面积旱地农田的H +净产量(产酸量)最高,达到19.0 kmol·hm -2·a -1,其次为水田(16.5 kmol·hm -2·a -1),林地的产酸量(3.2 kmol·hm -2·a -1)最低,旱地农田产酸量约为林地产酸量的6倍。6种主要农作物体系产酸量存在很大差异,从10.1 kmol·hm -2·a -1 到 30.0 kmol·hm -2·a -1不等,产酸量从大到小依次为:大豆>油菜>花生>水稻>玉米>甘薯,油料作物(油菜、花生、大豆)产酸量普遍大于粮食作物(水稻、玉米、甘薯)的产酸量;6种不同农作物的氮循环过程和盐基吸收的致酸贡献差异较大,氮循环过程致酸贡献率范围为45.3%— 78.3%,盐基吸过程为21.4%—54.2%。7种主要林地体系产酸量也存在很大差异,从2.0 kmol·hm -2·a -1到27.8 kmol·hm -2·a -1不等,柑橘>板栗>油茶林>马尾松>杉木>竹>湿地松,经济林(柑橘、板栗、油茶林)产酸量普遍大于用材林(马尾松、杉木、竹、湿地松)的产酸量;7种林木体系的氮循环过程和盐基吸收的致酸贡献率差异较大,氮循环过程致酸贡献率范围为46.1%—80.8%,盐基吸过程为19.0%—53.3%。采用“长期定位试验+土壤缓冲曲线”相结合的方法验证了本研究采用的H +产生量的计算方法,土壤pH的模拟值和实测值呈极显著正相关,均方根误差(RMSE)为0.15,两者之间吻合度较高。 【结论】氮循环过程是祁阳县域土壤酸化的主控因素。土壤酸化过程总产酸量差异和致酸因素贡献的大小主要取决于土地利用方式、农作物种类和林地类型。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号