首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   1篇
林业   7篇
综合类   4篇
  2019年   2篇
  2018年   7篇
  2017年   2篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
山杜英人工林土壤有机碳和营养元素的垂直分布格局   总被引:1,自引:0,他引:1  
土壤养分能为植物和土壤微生物的生存提供环境支撑和物质基础,在植物生长和生理代谢方面发挥重要的作用。以韶关市小坑林场山杜英(Elaeocarpus sylvestris)人工林为研究对象,通过测定不同土壤深度的碳、氮、磷和钾的质量分数,探讨不同土壤深度的养分质量分数和储量的垂直分布规律。在林地内建立3个面积为20 m×20m的样地,每个样地按梅花形挖5个土壤剖面,均按0h≤20 cm、20 cmh≤40 cm、40 cmh≤60 cm、60 cmh≤80 cm、80 cmh≤100 cm分层由下至上采集土壤,将每个样地5个土壤剖面同一土层混合成1个土壤样品,带回实验室分析。结果表明:①山杜英人工林土壤有机碳、氮、磷、钾的碳质量分数均随着土壤深度的增加呈现减少的趋势,其中,土壤有机碳和氮质量分数有明显的表层富集现象;②山杜英人工林土壤有机碳、氮、磷和钾储量分别为136.37、12.81、6.75和302.82 t·hm~(-2),其中,土壤有机碳和氮储量与土壤有机碳和氮质量分数的变化特征一致,均随土壤深度的增加而减少,但磷和钾储量随土层深度的增加而呈缓慢增加趋势。  相似文献   
2.
[目的]研究外源性氮和磷对马占相思凋落叶的分解速率、分解过程中N、P、K含量和土壤生化特性的影响,以便为森林土壤养分管理提供参考。[方法]以广东省云勇林场马占相思林下凋落叶为试验材料,采用尼龙网袋分解法,设置对照(CK)、施N(10 g·m~(-2))、施P(5 g·m~(-2))、施N+P(N 10 g·m~(-2)+P 5 g·m~(-2))4种处理,每隔3个月取样1次,并测定凋落叶残留量和N、P、K含量。[结果]表明:施N、P和N+P处理对马占相思凋落叶的分解均为促进作用。各处理马占相思凋落叶的N含量在分解过程中大致保持稳定,施P和N+P处理的凋落叶P含量在分解过程中总体呈波动性上升,而各处理的凋落叶K含量变化规律不明显。施N、P和N+P处理提高了马占相思林土壤的有机质和全N含量,促进脲酶、磷酸酶及过氧化氢酶的活性。[结论]施N、P和N+P处理促进了马占相思凋落叶的分解,有利于马占相思林的养分循环。  相似文献   
3.
试验研究了广东省佛山市高明区云勇生态林养护中心的打吊坑针阔混交林为的土壤理化性质和酶活性,为林分的合理经营提供依据,试验结果表明:打吊坑针阔混交林土壤容重中等,通气性和保水性一般;土壤呈强酸性,土壤有机质和养分含量总体处于中等水平,土壤酶活性较高。为此,提出了相应的建议增加荷木的栽植比例,以改善土壤的理化性质。  相似文献   
4.
【目的】研究外源性N和P对火力楠Michelia macclurei和马尾松Pinus massoniana凋落叶分解速率的影响,以及分解过程中的N、P、K含量变化,了解混合凋落叶分解对外源性N和P的响应机制,为森林资源管理提供参考。【方法】将火力楠和马尾松混合凋落叶置于火力楠林地及马尾松林地,分别设立4块5 m×5 m的小样方,喷施N、P和N+P,比较其分解速率及分解过程中的N、P、K含量变化。【结果】在2种林地的不同处理下,24个月后,火力楠林地混合凋落叶残留量为施N(4.99 g)对照(4.14 g)施N+P(2.17 g)施P(1.16 g),马尾松林地混合凋落叶残留量为施N(2.72 g)对照(1.21 g)施N+P(0.36 g)施P(0.16 g),施N对火力楠和马尾松林下的混合凋落叶的分解有抑制作用;施P后两者的混合凋落叶的分解速率均不同程度地有所加快;施N+P后两者的混合凋落叶的分解速率也均加快,但慢于施P处理。马尾松林下混合凋落叶残留量均小于火力楠林下混合凋落叶残留量。分解24个月后,火力楠林地施N、P和N+P的混合凋落叶N质量分数分别为13.72、12.34和13.70 g·kg~(–1),而马尾松林地分别为12.63、13.46和14.54 g·kg~(–1),均显著大于其凋落叶的初始N质量分数(9.90 g·kg~(–1));施P和N+P处理的火力楠林地混合凋落叶P质量分数由初始的0.38 g·kg~(–1)分别增至0.86和0.74 g·kg~(–1),而马尾松林地混合凋落叶P质量分数由初始的0.38 g·kg~(–1)分别增至1.37和1.05 g·kg~(–1)。凋落叶K含量的变化无规律。【结论】火力楠和马尾松混交可促进火力楠凋落叶分解,提高混合凋落叶的分解速率。  相似文献   
5.
选取广东省佛山林业科学研究所的山茶园中10种茶花为研究对象,对其叶片养分以及比叶面积进行测定分析。结果表明:10种茶花的叶片特征存在差异,茶花叶片中N、P、K、Ca、Mg含量范围分别为9.46~15.55、0.53~1.37、5.03~11.18、3.37~18.62、0.66~1.86 g·kg-1;SLA的范围为35.34~65.57 cm2·g-1;茶花叶片中N/P范围为9.61~17.85、N/K范围为1.18~1.99、K/P范围为5.10~9.92。主成分分析表明:茶花叶片特征排序为皇家天鹅绒杰作海泡皇家天鹅绒黄绣球赛桃红甜香水烈香恒丰9号茶梅张氏红山茶。  相似文献   
6.
对韶关市小坑林场山杜英人工林的N和P含量、储量及其分配格局进行了研究,以便为山杜英人工林的养分循环和科学经营提供依据。采用标准样地法,对样地内的乔木层按照叶、枝、干和根取样,灌木层和草本层分地上和地下部分取样,凋落物层用样方法取样。各组分的样品各取300 g,带回实验室分析研究。结果表明:1)山杜英人工林乔木层各组分的氮和磷含量为叶片>树枝>树根>树干,人工林垂直结构的氮含量呈现凋落物层>草本层>灌木层>乔木层,而磷含量为灌木层>凋落物层>草本层>乔木层。2)山杜英人工林养分储量为0.25 t/hm^2,其中乔木层、灌木层、草本层和凋落物层的养分储量分别为0.149、0.012、0.046和0.049 t/hm^2,分别占林分养分储量的58.2%、4.7%、18.0%和19.1%。3)乔木层各器官营养元素含量排序为叶>枝>根>干,储量为枝>干>根>叶。4)山杜英乔木层的C/N、C/P、N/P分别为52.86、688.80和13.03。  相似文献   
7.
外源性氮和磷对尾叶桉凋落叶分解的影响   总被引:2,自引:1,他引:1  
通过研究外源性氮和磷对尾叶桉(Eucalyptus urophylla)凋落叶分解速率、分解过程中N、P含量变化的影响,为森林养分管理提供科学依据。采用尼龙网袋分解法,在广东的尾叶桉林内建立4块5 m×5 m的小样地,放置凋落叶样品,测定其分解速率和N、P含量变化。结果表明,外源性N在试验前期分解速率有促进作用,后期阻碍了凋落叶分解。24个月时对照、施N、P和N+P的凋落叶残留量分别为初始重量的0.23%、1.59%、0.19%和0.49%。凋落叶分解24个月时尾叶桉林地各处理的凋落叶N、P含量均大于初始值,对照、施N、P和N+P的凋落叶N的残留量分别为初始N重量的0.54%、2.41%、0.35%和0.81%,凋落叶P的残留量分别为初始P重量的0.48%、1.74%、0.56%和1.52%,表明4种处理的凋落叶N和P均为释放模式。施N抑制尾叶桉凋落叶的分解,而施P及N+P促进其凋落物的分解,表明施用P肥可以促进尾叶桉凋落叶的分解和养分循环。  相似文献   
8.
以广东省佛山市高明区云勇生态林养护中心的一个针阔混交林为研究对象,对其叶片光合和养分特性进行了研究,以期为阔混交林的合理经营提供依据。结果表明:针阔混交林光合特性较弱,固碳释氧能力一般,但蒸腾作用较强;针阔混交林的叶片养分含量不高,表明树木吸收的营养元素较少,可能与土壤中所含养分含量较低有关。  相似文献   
9.
近年来,大气氮沉降日益增加,已对森林生态系统产生了不可忽视的影响,而土壤酶活性反映了土壤肥力及土壤环境质量,因而可以用来评价氮沉降对森林土壤造成的影响。关于氮沉降对森林生态系统酶活性的影响已开展了一系列的研究,然而尚缺少系统总结。文中从森林土壤酶种类和林分类型角度总结了氮沉降对土壤酶活性的影响,并从氮沉降水平、氮种类形态、氮沉降与环境的交互作用等方面探讨了土壤酶活性对氮沉降的响应机制,提出未来研究热点是氮沉降对不同类型的森林土壤酶影响、不同森林类型土壤酶的氮沉降临界值、氮沉降对土壤酶活性影响的长期定位研究以及氮沉降与CO2浓度、温度、降雨、磷添加的交互作用对土壤酶活性影响,以期为未来森林土壤管理提供参考。  相似文献   
10.
为分析茶花根际土壤化学性质、微生物数量以及酶活性,以广东省佛山林业科学研究所的山茶园中10种茶花为研究对象,在山茶园用5点取样法采集各茶花品种的0~40 cm土壤样品,用常规方法测定土壤pH值、有机质、全N、全P、全K、碱解N、速效P和速效K含量,用稀释平板法测定细菌、真菌和放线菌数量,分别用比色法、磷酸苯二钠比色法和高锰酸钾滴定法测定过脲酶、酸性磷酸酶及氧化氢酶酶活性,同时对土壤化学性质、微生物与酶活性之间进行相关性分析。结果表明,茶花样地的土壤养分状况存在差异,茶花的土壤pH值范围为4.02~4.27,有机质含量范围为15.64~24.21 g·kg~(-1),土壤全N、全P、全K含量范围分别为0.84~1.16、0.45~0.81、、5.50~6.54 g·kg~(-1),土壤碱解N、速效P、速效K含量范围分别为65.83~103.21、7.46~30.67、70.87~111.18 mg·kg~(-1)。土壤细菌、真菌、放线菌含量的范围分别为2×10~6~30×10~6、2.23×10~5~27.83×10~5、6.67×10~4~52.67×10~4 CFU·g~(-1),土壤过氧化氢酶、酸性磷酸酶、脲酶的活性范围分别为1.29~2.02 m L·g~(-1)h~(-1)、245.94~413.80 mg·kg~(-1)h~(-1)、618.83~1 212.39 mg·kg~(-1)d~(-1)。土壤有机质含量与土壤细菌和放线菌数量之间,全N与过氧化氢酶之间,碱解N与放线菌及过氧化氢酶之间,全P和速效P与放线菌和过氧化氢酶之间,速效K与酸性磷酸酶之间均呈显著正相关。10种茶花的土壤肥力综合排序依次为:恒丰9号海泡烈香杰作茶梅甜香水张氏红山茶皇家天鹅绒赛桃红黄绣球。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号