首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  完全免费   17篇
     24篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2016年   4篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2012年   5篇
  2011年   2篇
  2010年   3篇
  2008年   1篇
  2006年   1篇
排序方式: 共有24条查询结果,搜索用时 62 毫秒
1.
不同种植年限覆膜滴灌盐碱地土壤盐分离子分布特征   总被引:26,自引:10,他引:16       下载免费PDF全文
为了研究长期覆膜滴灌对土壤化学性质的影响,该文通过时空转化的方法研究了覆膜滴灌种植春玉米1a和2a的盐碱地土壤盐分及盐分离子在0~150 cm土壤削面上的分布特征,同时以试验地附近未种植的盐碱荒地作为对照.结果表明,覆膜滴灌条件下,当滴头下方20 cm处土壤基质势为-10 kPa时,0~40 cm土层土壤盐分含量、各种盐分离子含量、土壤pH值、Cl-/SO24和钠吸附比(SAR)随滴灌种植年限增加向降低.这表明根区土壤环境随种植年限增加逐渐变好,有利于作物生长.与盐碱荒地相比,滴灌种植以后40 cm以下土层Cl-含量、Na 含量、Cl-/SO24、钠吸附比(SAR)均增加了.  相似文献
2.
黄土塬面果园土壤养分特征及演变   总被引:6,自引:0,他引:6       下载免费PDF全文
为了探明黄土高原沟壑区长期种植果树对果园土壤肥力的影响,应用空间代时间的方法,对不同种植年限果园的土壤肥力状况进行多元统计分析。结果表明,果园土壤全磷、速效磷和速效钾含量丰富,有机质、全氮、碱解氮含量属中等偏下水平。不同果园中各养分变异较大的是土壤速效磷、速效钾,土壤有机质和全氮的变异系数最小。与当地农田土壤养分相比,果园土壤养分除有机质含量差异不显著,全氮含量显著低于农田外,其余养分含量均显著高于农田。总体上看,不同种植年限间果园土壤养分含量差异显著。果园土壤肥力综合指数与种植年限二者之间有显著的相关性,其变化趋势符合y =-0.0011x2+0.0419x+0.2078模型。在黄土高原沟壑区种植果树能够提高土壤肥力,但当果树种植年限超过19年时果园土壤肥力开始衰退,果园生态系统质量下降。  相似文献
3.
对黄土丘陵沟壑区3个种植年限典型的人工柠条林及对照坡耕地和荒坡地表层土壤的几个水分物理常数、水分特征曲线和比水容量进行了测定,结果表明:50 a以内的人工柠条林对土壤的黏化过程已经有一定影响,同时也较明显地改善土壤容重;通过对土壤持水和供水能力的大小比较得出,其持水和供水能力的大小均为46 a柠条林>30 a柠条林和21 a柠条林>荒坡地>坡耕地。由此可见,尽管人工柠条林不能快速地提高侵蚀土壤的发育状况,但能够通过改善土壤持水和供水能力,促进土壤正向发育。  相似文献
4.
不同栽培年限日光温室土壤团聚体的组成及稳定性   总被引:4,自引:1,他引:3       下载免费PDF全文
[目的] 揭示不同栽培年限日光温室土壤团聚体分布及稳定性的变化趋势,为探明设施蔬菜栽培土壤结构变化规律提供理论依据。[方法] 以辽宁省新民市设施蔬菜栽培基地温室土壤为研究对象,并以温室外露地土壤为对照,研究了栽培年限为2,5,8,16 a的日光温室土壤团聚体不同粒级的组成分布、机械稳定性、水稳性和团聚体破坏率的变化趋势。[结果] 不同栽培年限的土壤>0.25 mm团聚体数量、机械稳定性和水稳性均呈降低趋势,且低于露地土壤;栽培时间长于5 a后,>0.25 mm团聚体数量、机械稳定性和水稳定性有所升高。供试土壤在栽培初期,土壤中有机质对团聚体的形成和稳定性维持没有起到促进作用,随着栽培时间的增长,有机质促进了团聚体的形成和稳定。[结论] 研究区域温室土壤团聚体稳定性随栽培年限的增长呈先降低后升高的趋势。  相似文献
5.
种植年限对设施大棚土壤次生盐渍化与酸化的影响   总被引:3,自引:1,他引:2  
以京郊设施大棚为研究对象,分析了不同种植年限设施大棚土壤盐分含量、离子组成和pH值状况。结果表明,新建设施大棚在第3或第4年就出现了土壤次生盐渍化,5年以上的老设施大棚土壤电导率超标(0.5 mS?cm-1)率远高于新建设施大棚。设施大棚土壤盐分在0~20 cm表聚明显,盐分含量随着土层的加深而逐渐降低。盐基离子以 SO2-4为主,其次是 Ca2+;盐基离子含量大小顺序:阳离子为 Ca2+>Na+>K+>Mg2+;阴离子为SO2-4>HCO3->Cl-。设施大棚土壤pH值随着种植年限的延长而下降;连续种植15年后,设施大棚土壤盐分平均增加了1.25倍, pH值平均下降9.3%。土壤次生盐渍化与酸化两者伴随出现,已成为限制设施生产可持续发展的重要障碍。  相似文献
6.
不同种植年限砂田水盐变化与砂田退化初探   总被引:3,自引:1,他引:2       下载免费PDF全文
随着种植年限的增加,砂田的土砂比、土壤的水分与盐分含量都发生了明显的变化,加速了砂田的退化。对不同种植年限的砂田水盐变化及发生机理进行了分析,并总结了砂田退化的原因。结果表明,随种植年限的增加,提高了砂田的土砂比,砂田的保水、蓄水、抑蒸发、抑盐作用相对减弱,砂田的水盐变化与种植年限、砾石覆盖度、砂砾粒径、砂砾所处土壤表面的位置及地下水位密切相关,在一定程度上影响着砂田的退化。  相似文献
7.
铁是环境敏感元素。为弄清土地利用/覆被改变后川西漂洗水稻土亚铁时空分布特征,在四川省名山县第三、四、五级阶地典型位置选取水田、由水田改造的旱地和不同种植年限的茶园样地,于2009年5,7,9月和2010年1,3月,按10cm间距从表层向下采集土壤样品,测定土壤亚铁含量及相关的含水量、氧化还原电位、还原物质总量、pH、总有机碳含量、腐殖质组成和活性铁含量等指标,探讨亚铁剖面分布特征、季节动态及其影响因素。结果表明,土地利用方式的改变及植茶年限的延长,改变了土壤水分状况、氧化还原电位、还原物质总量、活性铁等,使川西漂洗水稻土亚铁含量发生变化,但不同阶地其变化特征有所不同,第三级阶地和四级阶地从水田(旱地)到1年(3年)茶园再到6年茶园,土壤亚铁总体呈先下降后上升趋势,而第五级阶地从水田到3年茶园再到7年茶园,土壤亚铁总体上先升后降;现代微域还原环境或地质时期还原环境使部分剖面亚铁分布特征不再遵循从表层向下逐渐降低的规律,而是在土体下部有极丰富的亚铁积累,最高达4 739mg/kg;表层土壤亚铁含量的季节动态特征并未显著改变,以9月或7月为主要积累时期。研究可为该区土壤/土地资源合理利用提供一定参考。  相似文献
8.
窦超银  康跃虎 《土壤》2010,42(4):630-638
采用时空替代的研究方法,研究地下水浅埋区重度盐碱地不同滴灌种植年限(0、1、2、3年)对土壤盐分及不同盐分离子分布的影响,旨在为采用覆膜滴灌技术进行盐碱地改良提供理论依据。试验结果表明滴灌种植枸杞第1年,土壤盐分变化主要为自上而下被淋洗,种植2年和3年土壤年内盐分含量和分布变化相似,盐分主要分布在土壤表层,且在枸杞生育期结束时,剖面土壤含盐量都低于年初水平;土壤溶液电导率(EC1:5)与主要离子之间都具有极显著的相关关系,其中Cl- 和Na+ 与EC1:5关系最为紧密;HCO3- 与EC1:5负相关,相关性随着种植年限的增加而减小;Cl-、Mg2+、Ca2+、Na+ 在盐分组成中的荷载随种植年限增加而增大;回归分析表明Cl- 和EC1:5之间具有线性关系,SO42- 与EC1:5之间具有对数关系,EC1:5可以通过Cl- 和SO42- 表达;利用咸水覆膜滴灌并没有根本改变土壤类型,但在距滴头水平距离0 ~ 30 cm范围内土壤含盐量从13.1 g/kg降低到4 ~ 6 g/kg,由盐土脱盐演化为重度盐化土。因此,采用覆膜滴灌技术明显降低了作物根区盐分含量,改善了作物根系生长的土壤环境条件。  相似文献
9.
滴灌条件下容重对压砂土壤水分入渗规律的影响   总被引:2,自引:1,他引:1       下载免费PDF全文
[目的]研究土壤容重对压砂地点源人渗的影响规律,为西北旱区发展砂地滴灌技术提供实际理论依据.[方法]通过室内模拟土槽试验,以裸地(无植被和压砂)为对照组(CK),研究了土壤容重(1.23,1.38,1.53 g/cm3)对不同种植年限压砂地(新压砂地、中压砂地、老压砂地)砂石层和土壤层两相介质点源人渗规律的影响.[结果]压砂土壤点源垂直累积入渗与其容重和种植年限皆呈负相关关系,压砂土壤在人渗初期,容重对其入渗深度无明显影响,当入渗到达土壤后,入渗深度明显受到容重的影响,容重越大,人渗深度越小;CK水平入渗距离随容重增加而增加,压砂土壤水平入渗随容重增加的变化无明显规律.用λ表征湿润体纵横比,CK和压砂土壤的λ总体随土壤容重增加而减小,压砂土壤容重相同时,λ随种植年限增加而减小.CK入渗前期λ随入渗时间的增加而增加,后期趋于平缓;压砂土壤λ入渗初期随时间增加显著增大,当入渗到达土壤时λ减小,中后期随入渗时间增加λ缓慢增长直至变化不明显.[结论]压砂对土壤水分垂直入渗有促进作用,压砂土壤点源垂直累积入渗与其容重和种植年限皆呈负相关关系.  相似文献
10.
为探究种植年限及密度对苹果园土壤干燥化变化的影响,以渭北旱塬洛川县不同种植年限和密度的果园为研究对象,采用烘干法测土样,2008年及2015年分别2次测得不同果园15m深土层含水量,以自然条件下农田为对照,分析其干燥化变化规律.结果表明:1)2008年测定5、10、15、20、25 a果园的土壤干燥化指数分别为6.46%、32.68%、37.65%、63.33%和62.81%,2015年测定当年果园经过7a后的12、17、22、27、32 a果园的土壤干燥化指数分别为35.98%、59.65%、42.21%、75.06%和70.09%,随着树龄增大,土壤干燥化指数整体增大,干燥化程度加剧;5a生苹果幼园土壤干燥化轻微,程度接近自然条件下农田;树龄15a后的果园土壤干燥化波及深度达11m左右的古土壤蓄水层,至17a后渭北旱塬古土壤层的缓冲作用已经丧失,果园产量及果实品质受限于当年降雨.2)研究中株行距密度从3 m×4 m变为4m×6m的22、25和32 a果园,干燥化进程得到控制,干燥化速率大幅下降,降低果园密度可以缓解因苹果树树龄增长造成的果园干燥化加剧,间伐措施后的果园降雨有所盈余,可以改善土壤干燥化现状;但在亏水年,间伐后的果园在充分利用降雨时,还需深层土壤水分的弥补,在树龄大的果园尤为常见,单靠间伐措施只能延迟土壤干层的形成.因此,要控制和减缓土壤干燥化的发展,应在干燥化影响波及古土壤层前采取措施,也即种植12a左右,果园处于中度干燥化程度时采取相应对策最佳.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号