首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   1篇
林业   1篇
  8篇
综合类   2篇
植物保护   3篇
  2023年   1篇
  2022年   1篇
  2020年   1篇
  2018年   2篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2004年   2篇
  2001年   1篇
  1999年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
Microbes have developed high-affinity uptake mechanisms to assimilate iron (Fe) and other metals such as aluminum (Al), gallium (Ga), chromium (Cr), and copper (Cu). Siderophores, which are metal chelating compounds, and membrane receptor proteins are involved in these specialized mechanisms. A few siderophore-producing microorganisms associated with plant roots also influence the uptake of some metals. In this study, the potential microbial-assisted Cu and Fe uptake by Phaseolus vulgaris (common bean) plants was evaluated. Seedlings of cultivated common bean varieties Bayo-INIFAP (B) and Negro-150 (N) and wild types yellowish (WY) and black (WB) were developed in the presence of a Cu and Fe solution and associated with the siderophore-producing microorganisms R. leguminosarumbv. Phaseoli (strains 19, 44, and 46); Pseudomonas fluorescens(strain Avm), and Azospirillum brasilense (strain 154). Seedlings of cultivated variety N and black wild type WB inoculated with the strain CPMex.44 accumulated 71% and 30% more Fe than the un-inoculated plants, respectively; however, the wild black bean accumulated the highest absolute amount of Fe (221.56 mg/kg of dry matter) as compared with the cultivated black variety N (126.16 mg/kg of dry matter) (P < 0.05). In the wild type WY seedlings, the highest Fe accumulation was observed when the seeds were inoculated with the Pseudomonas strain Avm (206 mg/kg of dry matter) (P < 0.05). The interaction of Pseudomonas strain Avm with seedlings of the cultivated B variety and the wild type WB promoted the highest accumulation of Cu (51 and 54 mg/kg of dry matter, respectively), 7 and 14 mg more than in the respective non-inoculated seedlings. No promotion of Fe accumulation was observed in the seedlings of the cultivated B variety and in roots; instead, less Fe was accumulated. The wild type WY did not show any improvement in Cu accumulation. In this study, Rhizobiumstrains promoted Fe but not Cu uptake in P. vulgaris seedlings while Pseudomonas strains promoted the uptake of both Cu and Fe.  相似文献   
2.
生物膜是一种附着于生命或非生命物体表面的有特殊结构和功能的微生物群落。它广泛地存在于自然界和人工环境中。本文对细菌生物膜的定义、形成过程、影响因素、抗性机制以及在植物与病原物互作中的研究作了简要综述。  相似文献   
3.
锈菌是最大的一类植物病原真菌,由其引起的病害严重威胁着全球农业生产安全。锈菌作为活体营养寄生菌,在其与寄主互作过程中会分泌大量效应子以促进其侵染。开展病菌效应子调控寄主免疫机制的研究将为锈病持久绿色防控提供理论依据。该文主要针对锈菌效应子的功能及其调控寄主免疫机制方面的研究进行了概述,并对锈菌效应子今后的研究方向进行了展望。  相似文献   
4.
S. D. VERESOGLOU 《土壤圈》2012,22(2):225-229
The vast majority of herbaceous plants engage into arbuscular mycorrhizal (AM) symbioses and consideration of their mycorrhizal status should be embodied in studies of plant-microbe interactions. To establish reliable AM contrasts, however, a sterilized re-inoculation procedure is commonly adopted. It was questioned whether the specific approach is sufficient for the studies targeting the bacterial domain, specifically nitrifiers, a group of autotrophic, slow growing microbes. In a controlled experiment mycorrhizal and non-mycorrhizal Plantago lanceolata were grown up in compartmentalized pots to study the AM effect on nitrification rates in the plant rhizosphere. Nitrification rates were assayed following an extensive 3-week bacterial equilibration step of the re-inoculated soil and a 13-week plant growth period in a controlled environment. Under these specific conditions, the nitrification potential levels at harvest were exceptionally low, and actual nitrification rates of the root compartment of non-mycorrhizal P. lanceolata were significantly lower than those of any other compartment. It is then argued that the specific effects should be attributed to the alleged higher growth rates of non-mycorrhizal plants that are known to occur early in the AM experiment. It is concluded that the specific experimental approach is not suitable for the study of microbes with slow growth rates.  相似文献   
5.
植物对微生物信号接收、传递及应答的研究是当前植物———微生物互作的分子生物学领域中最具吸引力的课题之一 ,Ca2 +是迄今为止唯一被证实的植物细胞内信号。大量研究表明 ,Ca2 +也参与了植物———微生物互作的信号传递。近 15年来 ,随着细胞生物学、生物化学、分子生物学研究技术的飞速发展 ,人们对Ca2 +在植物———微生物互作中生理意义的认识大为加深。从Ca2 +信号的研究方法、Ca2 +在植物抗病防卫反应中的作用、Ca2 +在植物———微生物共生关系中的作用及Ca2 +信号研究中存在的问题及展望等几方面综述了近年来相关研究的进展  相似文献   
6.
Trichoderma spp. probably have a role in remediation of polluted soils and waters. Highly rhizosphere competent strains persist on roots for an extended period of time (at least months) and continuously interact with the plants. They can increase general plant and root growth and increase uptake of a variety of materials. This makes the Trichoderma-plant interaction highly attractive for use in phytoextraction technologies. Moreover, Trichoderma spp. are resistant to a wide range of toxic…  相似文献   
7.
Salinity stress is considered one of the most harmful environmental plant stresses, as it reduces irrigated land crop production by over 20%worldwide.Hence, it is imperative to develop salt-tolerant crops in addition to understanding various mechanisms enabling plant growth under saline stress conditions.Recently, a novel biological approach that aims to address salinity stress has gained momentum, which involves the use of arbuscular mycorrhizal (AM) fungi in plant-microbe interactions. It has ...  相似文献   
8.
With the continuous increase in human population,there is widespread usage of chemical fertilizers that are responsible for introducing abiotic stresses in agricultural crop lands.Abiotic stresses are major constraints for crop yield and global food security and therefore require an immediate response.The implementation of plant growth-promoting rhizobacteria(PGPR)into the agricultural production system can be a profitable alternative because of its efficiency in plant growth regulation and abiotic stress management.These bacteria have the potential to promote plant growth and to aid in the management of plant diseases and abiotic stresses in the soil through production of bacterial phytohormones and associated metabolites as well as through significant root morphological changes.These changes result in improved plant-water relations and nutritional status in plants and stimulate plants’defensive mechanisms to overcome unfavorable environmental conditions.Here,we describe the significance of plant-microbe interactions,highlighting the role of PGPR,bacterial phytohormones,and bacterial metabolites in relieving abiotic environmental stress in soil.Further research is necessary to gather in-depth knowledge on PGPR-associated mechanisms and plant-microbe interactions in order to pave a way for field-scale application of beneficial rhizobacteria,with the aim of building a healthy and sustainable agricultural system.Therefore,this review aims to emphasize the role of PGPR in growth promotion and management of abiotic soil stress with the goal of developing an eco-friendly and cost-effective strategy for future agricultural sustainability.  相似文献   
9.
芽胞杆菌生物防治作用机理与应用研究进展   总被引:3,自引:0,他引:3  
芽胞杆菌Bacillus spp.是国际上应用非常普遍的生防细菌,一直是当今土壤微生物学和微生态学研究热点之一。目前,国内外已完成多个芽胞杆菌菌株全基因组测序分析工作。本文从芽胞杆菌的次生代谢与抑菌作用、生物膜与竞争作用、植物-芽胞杆菌-病原菌互作与诱导植物抗性三方面概括性地综述了芽胞杆菌的生防机制。通过芽胞杆菌功能拓展的分子改良,可以提高植物抗病性,并就生防芽胞杆菌剂的商业化生产及在农业上的应用作了探讨。近年来我国学者在芽胞杆菌应用基础研究上取得了丰硕成果,为进一步实现芽胞杆菌的产业化及其应用奠定了坚实的基础。  相似文献   
10.
Improvement in sustainable production of switchgrass (SG, Panicum virgatum L), as a purpose-grown biomass feedstock crop, could be realized through investigation of plant–microbe interactions associated with plant growth promoting rhizobacteria (PGPR), capable of biological nitrogen fixation (BNF). The objective of this study is to increase establishment year production of SG biofuels by inoculation with a mixed PGPR inoculum. We isolated pure strains of N2-fixing, and other PGPR, from SG rhizomes. The bacteria were identified as Paenibacillus polymyxa, an N2-fixing bacterium, and other PGPR capable of solubilizing phosphate and/or producing auxins. Field trials utilizing these strains in a mixed PGPR inoculum showed that inoculated plants contained more N in tillers during anthesis but not at senescence, suggesting that more N could be cycled to belowground roots and rhizomes for winter storage. The amount of N removal in biomass and recovery of fertilizer N were also greater for inoculated than uninoculated plants. PGPR inoculation also resulted in positive N balances, suggesting improved access to N from non-fertilizer N sources, possibly through BNF and improved soil N uptake. Overall, inoculation of SG with PGPR enhanced N acquisition and could be an effective strategy to increase the establishment year production of this crop.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号