全文获取类型
收费全文 | 104篇 |
免费 | 44篇 |
专业分类
林业 | 5篇 |
农学 | 2篇 |
基础科学 | 2篇 |
78篇 | |
综合类 | 24篇 |
畜牧兽医 | 13篇 |
园艺 | 1篇 |
植物保护 | 23篇 |
出版年
2025年 | 2篇 |
2024年 | 4篇 |
2023年 | 13篇 |
2022年 | 9篇 |
2021年 | 10篇 |
2020年 | 2篇 |
2019年 | 6篇 |
2018年 | 3篇 |
2017年 | 4篇 |
2016年 | 10篇 |
2015年 | 12篇 |
2014年 | 9篇 |
2013年 | 8篇 |
2012年 | 5篇 |
2011年 | 9篇 |
2010年 | 10篇 |
2009年 | 8篇 |
2008年 | 5篇 |
2007年 | 7篇 |
2006年 | 2篇 |
2005年 | 2篇 |
2003年 | 1篇 |
2002年 | 1篇 |
1999年 | 2篇 |
1997年 | 1篇 |
1996年 | 1篇 |
1995年 | 2篇 |
排序方式: 共有148条查询结果,搜索用时 21 毫秒
1.
Many studies have shown that changes in nitrogen (N) availability affect the diversity and composition of soil microbial community in a variety of terrestrial systems, but less is known about the responses of microbes specific to biological soil crusts (BSCs) to increasing N additions. After seven years of field experiment, the bacterial diversity in lichen-dominated crusts decreased linearly with increasing inorganic N additions (ambient N deposition; low N addition, 3.5 g N m−2 y−1; medium N addition, 7.0 g N m−2 y−1; high N addition, 14.0 g N m−2 y−1), whereas the fungal diversity exhibited a distinctive pattern, with the low N-added crust containing a higher diversity than the other crusts. Pyrosequencing data revealed that the bacterial community shifted to more Cyanobacteria with modest N additions (low N and medium N) and to more Actinobacteria and Proteobacteria and much less Cyanobacteria with excess N addition (high N). Our results suggest that soil pH, together with soil organic carbon (C), structures the bacterial communities with N additions. Among the fungal communities, the relative abundance of Ascomycota increased with modest N but decreased with excess N. However, increasing N additions favored Basidiomycota, which may be ascribed to increases in substrate availability with low lignin and high cellulose contents under elevated N conditions. Bacteria/fungi ratios were higher in the N-added samples than in the control, suggesting that the bacterial biomass tends to dominate over that of fungi in lichen-dominated crusts after N additions, which is especially evident in the excess N condition. Because bacteria and fungi are important components and important decomposers in BSCs, the alterations of the bacterial and fungal communities may have implications in the formation and persistence of BSCs and the cycling and storage of C in desert ecosystems. 相似文献
4.
Effects of artificially cultivated biological soil crusts on soil nutrients and biological activities in the Loess Plateau 总被引:1,自引:0,他引:1
YanMin ZHAO ;QingKe ZHU ;Ping LI ;LeiLei ZHAO ;LuLu WANG ;XueLiang ZHENG ;Huan MA 《干旱区科学》2014,(6):742-752
Biological soil crusts (BSCs) play an important role in the early succession of vegetation restoration in the Loess Plateau, China. To evaluate the effects of artificially cultivated BSCs on the soil surface micro-envir- onment, we obtained natural moss crusts and moss-lichen crusts from the Loess Plateau of Shaanxi province, and subsequently inoculated and cultivated on horizontal and sloping surfaces of loess soil in a greenhouse. The chemical and biological properties of the subsoil under cultivated BSCs were determined after 10 weeks of cul- tivation. The results indicated that BSCs coverage was more than 65% after 10 weeks of cultivation. Moss crust coverage reached 40% after 5 weeks of cultivation. Compared with the control, soil organic matter and available nitrogen contents in moss crust with the horizontal treatments increased by 100.87% and 48.23%, respectively; increased by 67.56% and 52.17% with the sloping treatments, respectively; they also increased in moss-lichen crust with horizontal and sloping treatments, but there was no significant difference. Available phosphorus in cultivated BSCs was reduced, soil pH was lower and cationic exchange capacity was higher in cultivated BSCs than in the control. Alkaline phosphatase, urease and invertase activities were increased in artificially cultivated BSCs, and alkaline phosphatase activity in all cultivated BSCs was obviously higher than that in the control. Numbers of soil bacteria, fungi and actinomycetes were increased in the formation process of cultivated BSCs. These results indicate that BSCs could be formed rapidly in short-term cultivation and improve the mi- cro-environment of soil surface, which provides a scientific reference for vegetation restoration and ecological reconstruction in the Loess Plateau. China. 相似文献
5.
探索在喀斯特石漠化退化生态系统下苔藓结皮及覆被土壤的养分的变化特征,以期为喀斯特石漠化生态环境修复提供新的理论参考。 以我国贵州典型喀斯特石漠化生态系统-花江石漠化综合治理示范区的苔藓结皮覆被土壤、移除结皮(一年后)以及裸土为研究对象,采用双因素分析方法探讨不同石漠化(无、轻、中、重度)生境下有无结皮覆被及不同土层深度(结皮层、0 ~ 5 cm、5 ~ 10 cm)对土壤酶活性、土壤碳氮磷含量及计量特征的影响。 ①苔藓结皮层土壤脲酶和β-葡萄糖苷酶活性均随着石漠化的等级的升高而升高,而蔗糖酶和碱性磷酸酶则无显著变化;无石漠化区的土壤有机碳含量和碳/氮、碳/磷、氮/磷比值显著高于轻、中、重度石漠化区。②土壤碳氮磷含量及计量特征、酶活性在结皮层与结皮下土层间存在显著差异,结皮层显著高于结皮下0 ~ 5 cm和5 ~ 10 cm土壤。③与苔藓结皮相比,除脲酶活性外,移除结皮一年后的土壤蔗糖酶、碱性磷酸酶、β-葡萄糖苷酶活性、碳氮磷含量及计量特征均有所减少,而与裸土相比则无明显变化。 苔藓结皮的存在提高了其覆被土壤的酶活性及碳氮磷含量,突出了苔藓结皮在退化喀斯特石漠化生境中生态功能的重要性。 相似文献
6.
Qiuju Wu Linhua Wang 《Acta Agriculturae Scandinavica, Section B - Plant Soil Science》2013,63(4):341-349
In arid and semiarid regions, water infiltration is often affected by the soil surface conditions, such as the soil crusts and soil roughness. The objective of this laboratory study was to assess the effects of soil crusts and tillage treatments on soil infiltration in the Loess Plateau of China. A simulated rainfall storm at 80 mm h?1 rate was applied to soil boxes set to slopes of 5°, 10°, 15° and 20° with two soil surface conditions (crusted and uncrusted) and three tillage treatments (contour tillage [CT], artificial digging [AD] and straight slope [SS]) to investigate the infiltration rates. The results show that the infiltration rate was always lower under the SS treatment than under the CT and AD treatments. The time interval to the steady state was shorter under the SS (10 min) than under the CT and AD treatments (15–20 min). The final infiltration rate was nearly the same under the CT treatment and AD treatment; whereas, the SS treatment resulted in the lowest final infiltration rate. The infiltration rates were always greater in soils without crusts than in soils with crusts. The slopes, soil crusts and tillage treatments had significant (p < 0.001) effects on the cumulative infiltration rates. The combined effects of the slopes and tillage treatments on the cumulative infiltration rates were much more significant (p < 0.01) than the other combined effects (p < 0.05). 相似文献
7.
黄土丘陵区退耕地生物结皮影响下的土壤腐殖质分异特征 总被引:2,自引:0,他引:2
本文对黄土丘陵区退耕地生物结皮影响下的土壤腐殖质分异特征进行了研究。结果表明,①该区生物结皮影响下的土壤腐殖质组分HA、FA和HM含量均有明显的分层特征,土层间均表现出:结皮层0~2cm土层2~5cm土层;不同年限生物结皮土壤腐殖质含量总体表现出:16年8年32年12年,表明退耕地生物结皮影响下的土壤腐殖质含量随时间变化呈非线性变化趋势;HA/FA平均值变化范围为0.34~0.70,低于1,该区生物结皮影响下的土壤腐殖质胡敏酸含量不高,腐殖酸以富啡酸为主;②结皮层土壤腐殖酸E4/E6值随时间变化总体上呈\"抛物线\"型变化趋势;而0~2cm和2~5cm土层土壤腐殖酸E4/E6值呈缓慢增长的趋势;③腐殖质组分与土壤养分因子的全N、NO3--N、NH4+-N和有效Zn之间存在极显著的线性相关关系(p0.01);④土壤腐殖质组分含量的变化与全N、NO3--N、NH4+-N和有效Zn含量间存在满足二项式的函数回归关系(p0.01),表明生物结皮对土壤C素与N素和有效Zn的影响密切相关。 相似文献
8.
Conventional tillage practices used on the Loess Plateau lead to different soil surface micro-topography which results in forming two types of soil crusts. The objective of this study was to explore the formation position, properties and erosion characteristics of structural crusts and depositional crusts under the influences of the microtopography in the rainfall experiments. Two simulated rainstorms were applied in the experiments. The first rainfall event was used for soil crust formation, then the following simulated rainfall storms at 40 mm h?1, 60 mm h?1, and 80 mm h?1 rates were applied to the soil boxes set to a 17.6% (10°) slope under three tillage types (contour tillage, artificial digging, and straight slope conditions) to investigate the resulting runoff discharge rate and sediment yield on crusted soil surface. Results show that: (1) structural crusts formed on the mounds, and depositional crusts formed in the depressions after the first rainfall events; structural crusts exhibit a lower thickness, bulk density, higher porosity and shear strength than depositional crusts; (2) structural crusts increased the runoff yield less and decreased the sediment yield more than depositional crusts; and (3) the runoff yield was significantly greater, and the sediment yield was lower on the crusted soil surface than that on the uncrusted soil surface, regardless of the effect of the tillage treatments. 相似文献
9.
Differential hydrological response of biological topsoil crusts along a rainfall gradient in a sandy arid area: Northern Negev desert,Israel 总被引:1,自引:0,他引:1
Drylands are regarded as highly sensitive to climatic change. The putative positive relationship between average annual rainfall and runoff, assumed for areas between 100 and 300 mm ignores the fact that climatic change in drylands is not limited to climatic factors alone, but is often accompanied by a parallel change in surface properties. Data on rainfall, runoff and soil moisture regime were collected at five monitoring sites in a sandy area, along a rainfall gradient from 86 to 160 mm. Despite the uniform sandy substratum the frequency and magnitude of runoff declined with increasing annual rainfall. Under wetter conditions a thick topsoil biological crust develops. This crust is able to absorb and retain large rain amounts, limiting the depth to which water can penetrate, and therefore water availability for the perennial vegetation. In the drier area, the thin crust can absorb only limited rain amounts, resulting in surface runoff and deeper water infiltration at run-on areas. Our findings demonstrate the important role played by different types of biological soil crusts along the rainfall gradient considered, and question the generally held belief that higher rainfall necessarily leads to deeper water infiltration in sandy arid areas; and higher water availability for the perennial vegetation. 相似文献
10.
S. Yan‐Gui L. Xin‐Rong C. Ying‐Wu Z. Zhi‐Shan L. Yan 《Land Degradation u0026amp; Development》2013,24(4):342-349
Enhanced carbon fixation in soil crusts may facilitate the restoration of damaged ecosystems, but this requires greater knowledge of carbon fixation patterns and mechanisms. We measured the net photosynthetic rate (Pn) and estimated annual carbon fixation (ACF) in cyanobacterial–algal crusts after desert fixation in the Tengger Desert, northwestern China. The accumulated carbon fixation since the establishment of a restoration site was also calculated. In addition, stepwise regression analysis was used to study the relation between Pn and ACF and the physicochemical properties of crusts. Results showed that Pn was significantly higher at a more established 51‐year‐old restoration site (1·57 µmol m−2 s−1) than at a younger 15‐year‐old site (0·92 µmol m−2 s−1). The ACF also increased significantly with restoration time, but in two temporal phases, a slower ACF phase between 15 and 26 years of restoration (0·28–0·7 gC m−2 y−1) and a high ACF phase after 43–51 years of restoration (3·3 gC m−2 y−1). Stepwise regression analysis revealed that Pn was significantly correlated with chlorophyll a and crust cover, whereas ACF was only correlated with crust cover. Accumulated carbon fixation increased from 2·9 gC m−2 after 15 years to 35·4 gC m−2 at 51 years following establishment of the restoration site. The accumulated carbon fixation was positively correlated with soil organic carbon content. This study demonstrated that carbon fixation by cyanobacterial–algal crusts increased progressively after desert fixation. Artificial measures, like the establishment of these restoration zones, can facilitate the colonization and development of biological soil crusts and are an effective biological tool for desert soil restoration. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献