首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30175篇
  免费   1510篇
  国内免费   3030篇
林业   1442篇
农学   2128篇
基础科学   969篇
  14183篇
综合类   10774篇
农作物   1758篇
水产渔业   459篇
畜牧兽医   1711篇
园艺   629篇
植物保护   662篇
  2024年   276篇
  2023年   673篇
  2022年   966篇
  2021年   1043篇
  2020年   1059篇
  2019年   1133篇
  2018年   919篇
  2017年   1404篇
  2016年   1688篇
  2015年   1413篇
  2014年   1561篇
  2013年   2137篇
  2012年   2329篇
  2011年   2321篇
  2010年   1803篇
  2009年   1892篇
  2008年   1677篇
  2007年   1796篇
  2006年   1599篇
  2005年   1286篇
  2004年   897篇
  2003年   737篇
  2002年   492篇
  2001年   418篇
  2000年   381篇
  1999年   362篇
  1998年   314篇
  1997年   280篇
  1996年   304篇
  1995年   278篇
  1994年   214篇
  1993年   220篇
  1992年   185篇
  1991年   143篇
  1990年   164篇
  1989年   110篇
  1988年   85篇
  1987年   71篇
  1986年   35篇
  1985年   16篇
  1984年   7篇
  1983年   6篇
  1981年   3篇
  1980年   3篇
  1979年   3篇
  1978年   2篇
  1977年   2篇
  1963年   1篇
  1962年   4篇
  1956年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Field experiments were conducted to determine the direct and residual contributions of legumes to the yield and nitrogen (N) uptake of maize during the wet seasons of 1994 and 1995 at the University Farm, Abubakar Tafawa Balewa University, Bauchi, Nigeria, located in the Northern Guinea savannah of Nigeria. Nodulating soybean, lablab, green gram and black gram contributed to the yield and N uptake of maize either intercropped with the legumes or grown after legumes as a sole crop. Direct transfer of N from the nodulating soybean, lablab, green gram and black gram to the intercropped maize was 24.9–28.1, 23.8–29.2, 19.7–22.1 and 18.4–18.6 kg N ha–1, respectively. However, the transfer of residual N from these legumes to the succeeding maize crop was 18.4–20.0, 19.5–29.9, 12.0–13.7 and 9.3–10.3 kg N ha–1, respectively. Four years of continuous lablab cropping resulted in yields and N uptake of the succeeding maize crop grown without fertilizer N that were comparable to the yields and N uptake of the succeeding maize crop supplied with 40–45 kg N ha–1 and grown after 4 years of continuous sorghum cropping. It may therefore be concluded that nodulating soybean, lablab, green gram and black gram may be either intercropped or grown in rotation with cereals in order to economize the use of fertilizer N for maize production in the Nigerian savannah.  相似文献   
2.
采用氮吸附法对4种生物质焦(稻壳、树叶、玉米秆、棉花秆)的孔隙结构进行测量,结果表明,不同种类焦样的比表面积和孔径分布有明显差别,树叶的比表面积最大,为242.21 m2·g-1,玉米秆的比表面积最小,为0.81 m2·g-1.850℃时,稻壳、树叶、玉米秆焦样的孔径分布曲线在微孔和中孔范围各有一个分布峰,而棉花秆焦样的孔径分布曲线只在中孔范围内出现一个分布峰.热解温度是影响孔隙结构的一个重要因素,在高温条件下,同步热解得到的焦样的比表面积较大,微孔较多.在本研究中,600℃、850℃的稻壳焦样和850℃的树叶焦样具有较大的比表面积,比较适合做吸附剂.  相似文献   
3.
Soil pH declined from 5.9 to 5.0 in 8 years beneath plantations of Eucalyptus saligna (Sm.) in Hawaii. In stands of Albizia falcataria, (L.) Fosberg, the soil pH change was more dramatic, declining from 5.9 to 4.6. We measured several components of soil acidity beneath four mixtures of the two tree species to gain insight on the processes responsible for the decline in soil pH. These components were studied using an empirical method of comparing acid quantity, degree of neutralization (depletion of base cations), and acid strength. The decline in soil pH differed between species as a result of differences in the degree of neutralization of the soil exchange complex; the larger decrease in soil pH under Albizia was produced by greater acidification of the exchange complex. Empirical titration curves suggested that differences in acid strength moderated the divergence in soil pH beneath the species. Had the acids accumulating in the soil under Albizia been as strong as those in the Eucalyptus soil, the difference in soil pH would have been greater. Though the two species had contrasting effects on soil pH, the differences in degree of neutralization, responsible for the pH decline, were small compared with differences in the amount of cations stored in tree biomass. Continued supply of nutrient cations (from weathering or fertilization) will ultimately control both the extent of soil pH decline and the level of productivity sustained by the forest.  相似文献   
4.
Abstract. In field and laboratory experiments the conditioner‘Agri-SC’has shown improvements in the structure of loamy sand soils in east Shropshire, UK. It resulted in statistically significant decreases in soil bulk density values and increases in soil porosity and aggregate stability. Further experiments are in progress on both loamy sand and silt loam soils.  相似文献   
5.
Little is known about the effect of fertilization on the N uptake of sunflowers. A 42 factorial trial with 0, 60, 120 and 180 kg N ha−1 and 0, 15, 30 and 45 kg P ha−1 was conducted over three years. The N content and concentration of leaves, stems and capitula were determined at three growth stages. High N levels increased the N content and concentration of all plant parts at all growth stages sharply. High P levels increased the N content of all plant components through better growth. P has an inconsistent effect on N concentration but tended to decrease it. After flowering the crop assimilated 20 to 25 % of the total N. This implies that N applied can still be applied and utilized by the crop at a late stage. This should be substantiated by further research.  相似文献   
6.
Root development of sugar beet plants on a sandy loess site with regard to nitrogen nutrition.
Root development of sugar beet plants in a sandy loess soil (Haplic Phaeozem) was observed from the early seedling stage up to harvest by measuring at first the greatest vertical and lateral extension of the root systems of single plants and later the rooting density of the whole plant stands (auger method, profile wall method).
During the seedling stage not only the subsoil, but also large parts of the topsoil between the plants remained unoccupied by the root systems. In this phase the greatest lateral extension of single roots reaches nearly the length of the greatest leaf of the plant. With the closure of the canopy the rooting density in the topsoil accounts to 1–2 cm cm−3.
In summer roots penetrate to a depth of 100–150 cm with rooting densities of 0.1 to 1 cm - cm−3. Thus, the plants gain not only access to water reserves, but sometimes meet remarkable amounts of nitrate which under the relatively dry conditions of the region tends to accumulate in 60–120 cm depth and – when taken up by the beet plants in the late stage of growth – affects crop quality negatively.  相似文献   
7.
海南半干旱地区芒果间作柱花草及作物效益初探   总被引:12,自引:4,他引:8  
1998~2001年在海南东方干旱半干旱燥红土芒果与柱花草及作物间作示范区的实践表明,在芒果园间作扁豆、柱花草、番薯和花生可显著提高芒果挂果率,芒果收入比芒果单种分别增加97.79%、98.53%、54.41%和48.28%,果园综合收入比芒果单种分别增加108.55%、98.53%、97.98%和91.58%,同时,果园间作可显著提高果园土壤有机质、全氮、速效磷的含量和土壤pH值,间作扁豆使土壤有机质含量增加53.3%,间作柱花草使土壤全氮增加43.92%,速效磷增加78.16%,从而达到了以短养长、增加农民收入、提高土壤肥力和持续管理利用的目的。  相似文献   
8.
A field experiment was conducted with different nitrogen regimes to assess the growth and yield performance of wheat genotypes which differ in nitrate assimilation potential. Genotypic differences in biomass accumulation were observed at different growth stages. The nitrogen treatment had little effect on biomass accumulation at early stages of growth, while at later stages of growth there was enhanced biomass accumulation when N was applied in more than two splits. On an average, genotypes with high nitrate reductase activity (the 'HNR' genotypes) accumulated 14.2 % more biomass than the genotypes with low nitrate reductase activity ('LNR' genotypes) when an extra dose (40 kg N ha−1) of nitrogen was given at the time of anthesis. The application of nitrogen in more than two splits increased grain yield of both 'HNR' and 'LNR' genotypes mainly by increasing grain weight per ear. The application of an extra dose of nitrogen (40 kg N ha−1) at the time of anthesis increased grain yield of 'HNR' genotypes by 38.5 % as compared to 'LNR' genotypes.  相似文献   
9.
Dry Matter Production, CO2 Exchange, Carbohydrate and Nitrogen Content of Winter Wheat at Elevated CO2 Concentration and Drought Stress
Methods of mathematical modelling and simulation are being used to an increasing degree in estimating the effects of rising atmospheric CO2 concentration and changing climatic conditions on agricultural ecosystems. In this context, detailed knowledge is required about the possible effects on crop growth and physiological processes. To this aim, the influence of an elevated CO2 concentration and of drought stress on dry matter production, CO2 exchange, and on carbohydrate and nitrogen content was studied in two winter wheat varieties from shooting to milk ripeness. Elevated CO2 concentration leads to a compensation of drought stress and at optimal water supply to an increase of vegetative dry matter and of yield to the fourfold value. This effects were caused by enhanced growth of secondary tillers which were reduced in plants cultivated at atmospheric CO2 concentration. Analogous effects in the development of ear organs were influenced additionally by competitive interactions between the developing organs. The content and the mass of ethanol soluble carbohydrates in leaves and stems were increased after the CO2 treatment and exhausted more completely during the grain filling period after drought stress. Plants cultivated from shooting to milk ripeness at elevated CO2 concentration showed a reduced response of net photosynthesis rate to increasing CO2 concentration by comparison with untreated plants. The rate of dark respiration was increased in this plants.  相似文献   
10.
Abstract. Nitrous oxide (N2O) is involved in both ozone destruction and global warming. In agricultural soils it is produced by nitrification and denitrification mainly after fertilization. Nitrification inhibitors have been proposed as one of the management tools for the reduction of the potential hazards of fertilizer-derived N2O. Addition of nitrification inhibitors to fertilizers maintains soil N in ammonium form, thereby gaseous N losses by nitrification and denitrification are less likely to occur and there is increased N utilization by the sward. We present a study aimed to evaluate the effectiveness of the nitrification inhibitor dicyandiamide (DCD) and of the slurry additive Actilith F2 on N2O emissions following application of calcium ammonium nitrate or cattle slurry to a mixed clover/ryegrass sward in the Basque Country. The results indicate that large differences in N2O emission occur depending on fertilizer type and the presence or absence of a nitrification inhibitor. There is considerable scope for immediate reduction of emissions by applying DCD with calcium ammonium nitrate or cattle slurry. DCD, applied at 25 kg ha–1, reduced the amount of N lost as N2O by 60% and 42% when applied with cattle slurry and calcium ammonium nitrate, respectively. Actilith F2 did not reduce N2O emissions and it produced a long lasting mineralization of previously immobilized added N.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号