首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   2篇
  5篇
综合类   1篇
农作物   1篇
水产渔业   1篇
畜牧兽医   3篇
植物保护   1篇
  2020年   2篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2009年   2篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
排序方式: 共有12条查询结果,搜索用时 41 毫秒
1.
Aquaculture pond is a complex ecosystem where the microorganisms in the sediments, in the animal intestinal tract and in water interact with each other to influence the water quality and health of aquatic animals. In order to understand the spatial distribution and relationship of microbial communities in intensively farmed genetically improved farmed tilapia (GIFT, Oreochromis niloticus), 454 high‐throughput pyrosequencing was applied to analyse the 16S rRNA gene of bacteria in intensive GIFT ponds in Wuxi City, Jiangsu Province, China. A total of 72 747 initial sequences were obtained from four depths of pond water, from tilapia large intestines and from pond sediment. The most common phylum in all samples was Proteobacteria, Actinobacteria and Cyanobacteria were the most abundant in water, Fusobacteria and Firmicutes in the large intestine and Chloroflexi in sediment samples. The sediment microbial community structure was comparatively similar to that of the tilapia large intestine. The microbial communities from different water depths were somewhat similar, especially the three most shallow samples, although the abundance of Actinobacteria gradually decreased with increased water depth. This data offer a preliminary exploration of the response mechanisms of the bacterial communities to aquafarming and contributes to the understanding of the status of bacterial communities of tilapia pond systems during the peak period of breeding from the aspect of their spatial distributions.  相似文献   
2.
Interactions between earthworms and microorganisms are essential for the functioning of soil ecosystems as they affect organic matter degradation and nutrient cycling. This is also true for the alpine region, where socio-economic changes lead to the increasing abandonment of pastures, which in turn, causes a considerable shift in the diet of saprotrophic invertebrates and thus impacts food web and decomposition processes. To enhance our understanding of how this diet shift influences earthworms and associated microorganisms, we studied the gut content and cast microbiota of Lumbricus rubellus (Lumbricidae, Oligochaeta), a key macrodecomposer on alpine pastureland in the Central Alps. A feeding experiment with L. rubellus and three different food sources that represent the vegetation shift from an alpine pasture to an abandoned site was set up. Earthworms were collected in the field, transferred to a climate chamber and fed with cow manure, dwarf shrub or grass litter for six weeks. PCR-DGGE (Polymerase chain reaction-denaturing gradient gel electrophoresis) analysis of the DNA extracted from the substrates, the earthworms' gut contents and casts revealed that the gut and cast microbiota was strongly influenced by the food source ingested. Cloning of bacterial 16S rRNA gene fragments demonstrated that the intestinal content was dominated by Proteobacteria, especially from the Gamma-subclass, followed by members of the phyla Bacteroidetes, Actinobacteria and Firmicutes. In contrast, Actinobacteria were detected abundantly in all samples types when a cultivation approach was used. In conclusion, the gut microbiota of L. rubellus was shown to be substantially affected by the food source ingested, suggesting that this essential macrodecomposer is exposed to the diet shift resulting from a land-use change in the alpine area.  相似文献   
3.
The effect of bensulfuron-methyl (BSM) on a soil microbial community in a model paddy microcosm was studied. Total bacterial numbers in the overlying water and surface soil were monitored for 2 months after the application of BSM at the field rate and a ten-fold field rate. Pentachlorophenol (PCP) was used for comparison. Neither chemical affected the total bacterial numbers remarkably, either in the overlying water or in the surface soil. In contrast, the nitrification potential was significantly suppressed by the BSM application. The bacterial community structure, as evaluated by the denaturing gradient gel electrophoresis (DGGE) of PCR amplification products from bacterial 16S rDNA, was unaffected by the BSM treatments over 8 weeks in the surface soil, compared with the control (no pesticide). In contrast, the surface soil exposed to PCP at a ten-fold field rate showed different patterns from the controls at 4 weeks and 8 weeks after application. The DGGE patterns of the overlying water were much more variable than those of the surface soil in any treatments. Cluster analysis showed that the BSM plots were classified within the same group as the control at 1 week after application and that the BSM and PCP plots from 2 weeks onward after application were grouped differently from the control. Of 22 clones excised from the DGGE gels, 20 clones belonged to the Proteobacteria and two belonged to the Verrucomicrobia. It was considered that the impact of BSM on the overall microbial community (total numbers, community structure of soil) was negligible, although BSM had an impact on some specific functions of the soil microbial community (nitrification) and a part of the community (overlying water).  相似文献   
4.
This report describes the clinical presentation, isolation and treatment of two dogs naturally infected with Bartonella henselae and Bartonella vinsonii subsp. berkhoffii. Chronic and progressive polyarthritis was the primary complaint for dog #1, from which B. henselae and B. vinsonii subsp. berkhoffii were cultured on three independent occasions from blood and joint fluid samples, despite administration of nearly 4 months of non-consecutive antibiotic therapy. A clinically atypical and progressively severe trauma-associated seroma was the primary complaint for dog #2, from which B. henselae and B. vinsonii subsp. berkhoffii were isolated from serum, blood and seroma fluid. Dogs can be co-infected with two Bartonella spp. and infection with these organisms should not be ruled out if specific antibodies are not detected. Specialized culture techniques should be used for isolation and to assess antibiotic efficacy.  相似文献   
5.
Intracellular pathogens were investigated for the first time in 55 Chilean bats belonging to six species. Using a conventional PCR protocol targeting a fragment of the ITS region, 21 bats (38 %) were positive for DNA of Bartonella sp. Molecular characterization of fragments of the gltA, rpoB and fstZ genes and subsequent phylogenetic analysis indicated the presence of diverse genotypes related to Bartonella from bats worldwide. DNA from C. burnetii was investigated using a real-time PCR (qPCR) protocol targeting the IS1111 gene and yielded positive results for 5 individuals (9%), being the first report of C. burnetii in wildlife in Chile. All bats were negative for Rickettsia sp., evaluated by qPCR for the gltA gene, confirming that bats do not act as important reservoirs for Rickettsia. This preliminary survey calls for more comprehensive studies on the epidemiology of these agents, including larger sample sizes, the evaluation of potential transmission routes and spillover potential.  相似文献   
6.
After years of inadequate use and the emergence of multidrug resistant (MDR) strains, the efficiency of “classical” antibiotics has decreased significantly. New drugs to fight MDR strains are urgently needed. Bacteria hold much promise as a source of unusual bioactive metabolites. However, the potential of marine bacteria, except for Actinomycetes and Cyanobacteria, has been largely underexplored. In the past two decades, the structures of several antimicrobial compounds have been elucidated in marine Proteobacteria. Of these compounds, polyketides (PKs), synthesised by condensation of malonyl-coenzyme A and/or acetyl-coenzyme A, and non-ribosomal peptides (NRPs), obtained through the linkage of (unusual) amino acids, have recently generated particular interest. NRPs are good examples of naturally modified peptides. Here, we review and compile the data on the antimicrobial peptides isolated from marine Proteobacteria, especially NRPs.  相似文献   
7.
8.
黄、渤海春季刺参肠道及养殖池塘细菌菌群的多样性   总被引:1,自引:0,他引:1  
以黄海和渤海春季刺参养殖池塘的沉积物、海水和刺参Apostichopus japonicus肠道内容物中的细菌基因组DNA为模板,以细菌16S rDNA通用引物进行PCR扩增,构建16S rDNA文库并进行测序分析。结果表明:黄海和渤海养殖刺参肠道内容物、池塘沉积物和海水中共存在变形菌Proteobacteria、蓝细菌门Cy:anobacteria、放线菌门Actinobacteria、拟杆菌门Bacteroidetes和厚壁菌门Firmicutes 5个门类的细菌类群,其优势类群均为变形菌(变形菌比例>41%),且在文库所含变形菌的4个亚门( Alphaproteobacteria、 Betap:roteobacteria、 Gammaproteobacteria、 Deltaproteobacteria)中,除黄海春季刺参养殖池塘海水文库(YSp3)中α-变形菌占优势外,其余5个文库均以γ-变形菌为优势亚门。  相似文献   
9.
甲烷氧化菌以甲烷作为碳源和能源,在全球甲烷平衡和温室效应控制中扮演着重要角色。甲烷生物氧化过程跨越不同氧化还原生态位,近年来的研究表明,在湿地缺氧生态位下变形菌门甲烷氧化菌具有代谢潜力,但其能量代谢机制尚不清楚。本研究基于生物电化学技术、矿物学实验及微生物组学方法,结果表明变形菌门甲烷氧化菌主导的菌群具有直接和间接胞外电子传递潜力;在氧气耗尽时,甲烷氧化菌群可利用水铁矿作为电子受体完成能量代谢过程,缺氧体系中γ-Proteobacteria纲的甲烷氧化菌和非甲烷氧化微生物共同驱动铁矿还原。本研究探讨了变形菌门甲烷氧化菌主导菌群的缺氧能量代谢过程,拓展了反硝化厌氧甲烷氧化菌及厌氧甲烷氧化古菌主导的缺氧甲烷氧化理论,为甲烷生物控制提供了理论支持。  相似文献   
10.
Tufa is a carbonate sediment contains inorganic and organic substances such as algae, microorganism and invertebrate. Microbial diversity of tufa found in Taroko National Park was investigated using 16S rRNA cloning and fluorescent in situ hybridization (FISH). Eleven 16S rRNA phylotypes and 37 genus and group of bacteria were identified. Of total 381 clones isolated, proteobacteria occupied 25-30% whereas cyanobacteria dominated 16-28% in total microbial population in the three sites. Acidobacteria, agricultural soil bacterium, verrucomicrobia and firmicutes were, generally, distributed in the three sampling sites. Among the three sampling sites, Baiyang walkway is found to be the most diverse site in its tufa microbial composition, indicated by species richness plot and FISH.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号