首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
林业   1篇
农学   1篇
  2篇
综合类   1篇
  2021年   1篇
  2018年   1篇
  2016年   2篇
  2013年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
利用2013年11月15日的TM遥感影像,结合归一化建筑指数(NDBI)、改进的归一化建筑指数(IB)、新居民地提取指数(NBI)等建筑物提取指数对毕节市七星区城区建筑用地信息进行有效提取和分析,并用混淆矩阵和对应年份实际城镇用地面积对3种方法的提取精度分别进行了验证。结果表明,NBI指数算法比其他建筑指数算法提取建设用地信息的精度高且误差小,采用NBI指数能更准确地提取建设用地的信息。  相似文献   
2.
白刺幼苗芽库及枝系构型对不同氮添加水平的响应   总被引:1,自引:0,他引:1       下载免费PDF全文
[目的]研究不同氮添加梯度下白刺幼苗芽库组成及空间结构的差异,探讨了幼苗的养分限制、氮素利用以及根系和插穗的品质与芽库的关联,阐明了白刺芽库响应氮素有效性所采取的适应性策略。[方法]本研究通过盆栽控制实验,对唐古特白刺幼苗的芽库特征进行了测量分析。[结果]氮添加显著增加了白刺幼苗芽和营养枝数量,显著降低了休眠芽和休眠枝数量,并对二级枝和三级枝出芽率具有明显促进作用;随着氮添加量的递增,营养枝有从基部向顶端移动趋势;氮平衡指数与白刺幼苗出芽强度、分枝强度、二级枝和三级枝出芽率均呈二次非线性正相关关系;植株氮含量、氮积累量和地下部分形态特征分别与芽和营养枝数量呈正相关关系,与休眠芽和休眠枝数量呈负相关关系。[结论]氮添加影响幼苗芽库容量。随着氮添加水平的提高,各指标多数在N3和N4处理达到最大值后逐渐降低,因此6个氮添加水平中36 mmol·L-1和48 mmol·L-1是白刺幼苗最适氮添加量。氮添加对幼苗芽库内组分的相对位置产生了不同影响趋势,所以白刺幼苗可以通过改变芽库容量和空间分布来响应养分有效性变化。  相似文献   
3.
Abstract

Up to now, there has not been any research that has tried to establish nitrogen (N) status diagnosis in basic seed potatoes, propagated by sprout in a three-phase hydroponic system. The objective of this study was to develop a potential index to be used in the diagnosis of N status in potato, using a three-phase hydroponic system, with the potato cultivar Agata. The treatments consisted of four N concentrations: 0, 7.8, 13 and 26?mmol L?1. The experiment was conducted in a randomized block design with 12 replications in a non-acclimatized greenhouse. It was evaluated in a destructive and non-destructive way, and in real-time or space–time, 18 biometric characteristics of the reference leaf and of plant organs besides other variables related to the fourth leaf green color. Among the non-destructive characteristics measured, length, and diameter of the internodes and thickness of the fourth leaf showed the highest correlation coefficient (p?相似文献   
4.
Sustainable N management of intensive vegetable crops requires accurate and timely on-farm assessment of crop N status. Proximal fluorescence-based sensors are promising tools for monitoring crop N status, by providing non-destructive optical measurements of N-sensitive indicator compounds such as chlorophyll and flavonols. The ability of the Multiplex® fluorescence sensor to determine crop N status was evaluated in two indeterminate cucumber crops grown in contrasting seasons (autumn and spring). Three fluorescence indices, leaf chlorophyll (SFR) and flavonols (FLAV) contents, and their ratio (Nitrogen Balance Index, NBI) were evaluated, and their consistency between the two crops compared. Actual crop N status was assessed by the Nitrogen Nutrition Index (NNI), calculated as the ratio between the actual and the critical crop N contents (i.e., the minimum N content for maximum growth). There were strong relationships between each of SFR, FLAV and NBI with crop NNI, for most weekly measurements made throughout the two crops. For the three indices, coefficients of determination (R2) were mostly 0.65–0.91 in the autumn crop, and 0.71–0.99 in the spring crop. SFR values were generally comparable between the two crops, which enabled the derivation of common relationships with NNI for individual phenological phases that applied to both cropping seasons. FLAV and NBI values were not comparable between the two crops; FLAV values were appreciably higher throughout the spring crop, which was attributed to the higher solar radiation. Consequently, phenological relationships of FLAV and NBI with NNI were established for each individual cropping season. Our findings suggested that SFR was the most consistent index between cropping seasons, and that NBI was the most sensitive index within each season. Regardless of the index and crops, all fluorescence indices were weakly related to crop NNI during the short vegetative phase while stronger relationships were found in the reproductive and harvest phases. This study also showed that the three fluorescence indices were sensitive to and able to distinguish deficient from optimal crop N status, but that they were insensitive to discriminate optimal from slightly excessive N status. Overall, this study demonstrated that fluorescence indices of chlorophyll content (SFR), flavonols content (FLAV) and nitrogen sufficiency (NBI) can be used as reliable indicators of crop N status in cucumber crops; however, there was variability in FLAV and NBI values between cropping seasons and a lack of sensitivity in the range of optimal to slightly excessive crop N status.  相似文献   
5.
陈梅  王远  陈贵  纪荣婷  施卫明 《土壤》2021,53(4):700-706
采用两个超高产籼粳杂交水稻甬优12、冬制14为材料,以常规粳稻秀水134为对照,设置田间小区试验,比较研究超高产杂交稻甬优12、冬制14氮平衡指数(NBI)及产量对不同施氮量(0、200、300、400 kg/hm2)的响应,评估超高产杂交水稻叶片NBI与叶片氮含量、地上部氮素累积、产量之间的关系。结果表明,在相同施氮量下,超高产杂交稻甬优12、冬制14的产量高于对照品种秀水134,产量优势主要体现在穗大粒多,在施氮量300 kg/hm2时产量最高,分别为13.48 t/hm2和11.51 t/hm2,而常规粳稻在施氮量200 kg/hm2时产量最高,为9.49 t/hm2。氮肥的施用提高了了甬优12、冬制14的叶绿素指数、NBI,降低了类黄酮指数,施肥量越高NBI提高的幅度越小。在齐穗期,超高产杂交稻的NBI显著高于对照品种。在水稻分蘖期和拔节期,甬优12、冬制14的NBI与叶片氮含量、地上部氮素累积、产量显著正相关,NBI可以用于超高产杂交水稻快速氮素营养诊断和产量预测。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号