首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   345篇
  免费   19篇
  国内免费   17篇
林业   9篇
农学   24篇
基础科学   6篇
  116篇
综合类   168篇
农作物   22篇
水产渔业   1篇
畜牧兽医   16篇
园艺   14篇
植物保护   5篇
  2024年   4篇
  2023年   12篇
  2022年   10篇
  2021年   17篇
  2020年   11篇
  2019年   19篇
  2018年   6篇
  2017年   8篇
  2016年   15篇
  2015年   10篇
  2014年   11篇
  2013年   9篇
  2012年   10篇
  2011年   8篇
  2010年   8篇
  2009年   13篇
  2008年   15篇
  2007年   18篇
  2006年   9篇
  2005年   14篇
  2004年   10篇
  2003年   7篇
  2002年   13篇
  2001年   9篇
  2000年   12篇
  1999年   5篇
  1998年   5篇
  1997年   7篇
  1996年   12篇
  1995年   19篇
  1994年   9篇
  1993年   8篇
  1992年   6篇
  1991年   5篇
  1990年   12篇
  1989年   4篇
  1988年   2篇
  1957年   7篇
  1953年   2篇
排序方式: 共有381条查询结果,搜索用时 0 毫秒
1.
[目的]探讨低分子有机酸对龙葵吸收镉(Cd)的影响,以期为提高贵州地区黄壤重金属污染的植物修复效率提供科学依据.[方法]采用盆栽试验种植龙葵,待龙葵生长60 d后,将不同浓度的低分子有机酸(柠檬酸、苹果酸和酒石酸)及其复合处理(柠檬酸+苹果酸、柠檬酸+酒石酸)以溶液形式加入土壤,以添加500 mL去离子水为对照(CK),1个月后收获植株样品并采集土壤样品,分析不同处理对龙葵生长及吸收转运重金属Cd的影响.[结果]柠檬酸添加量为2.5 mmol/kg时龙葵单株生物量最高,较CK显著增加6.75%(P<0.05,下同),其他处理的生物量均低于CK.3种有机酸均能强化龙葵根、茎、叶和果实对Cd的吸收,表现为苹果酸>酒石酸>柠檬酸,各部位的Cd含量表现为叶>茎>根>果实,且均在苹果酸添加量为5.0 mmol/kg时达最大值,分别为CK的1.68、1.53、1.21和1.32倍.添加2.5 mmol/kg酒石酸和5.0 mmol/kg苹果酸时龙葵对Cd的累积量较高,二者显著高于其他处理.添加柠檬酸、苹果酸和酒石酸均能提高龙葵对Cd的转移和富集能力,作用表现为苹果酸>酒石酸>柠檬酸,其中,添加5.0 mmol/kg苹果酸时龙葵对Cd的富集系数最大,为12.81.相对于单一有机酸处理,复合有机酸处理对龙葵富集Cd的能力无明显优势.[结论]添加适当浓度的柠檬酸、苹果酸和酒石酸均能提高龙葵各部位对Cd的吸收及土壤Cd从地下向地上部转移的能力,促进龙葵对Cd的转移和富集;其中苹果酸添加量为5.0 mmol/kg时,龙葵对Cd的累积量相对较高且富集系数最大,对土壤中Cd的植物修复效果最好.  相似文献   
2.
为探讨生物炭长期施用对酸化茶园土壤改良和真菌群落结构的影响,分析了按生物炭用量0、2.5、5、10、20、40 t·hm-2施用5年后的茶园土壤性状和真菌群落结构变化。结果表明,施用生物炭5年后的茶园土壤pH提高了0.16~1.11,可溶性有机碳含量提高了52.6%~92.3%,而铵态氮和硝态氮含量以10 t·hm-2处理最高。施用生物炭5年后的土壤性质变化,进一步影响了真菌群落结构,表现为Chao指数、ACE指数和Shannon指数随生物炭用量增加呈先增加后降低的趋势;提高生物炭施用量对茶园土壤次要作用的真菌(LDA值<3.50)丰度的增加效果高于优势真菌(LDA值>3.50)的效果,其中被孢霉属、木霉属、毛壳菌属的相对丰度增加,黑盘孢属的相对丰度降低。  相似文献   
3.
生物炭对酸化茶园土壤性状和细菌群落结构的影响   总被引:1,自引:0,他引:1  
  【目的】   生物炭作为一种高效、绿色、多功能的土壤调理剂受到了广泛关注,但生物炭对酸化茶园土壤改良的长期效应还缺乏了解。研究施用生物炭5年后对茶园土壤性状和细菌群落结构的影响,为生物炭在酸化土壤改良上的合理应用提供科学依据。   【方法】   茶园生物炭田间试验在福建安溪县进行,茶园种植年限超过7年,茶树品种为铁观音,土壤为黄壤 。试验设生物炭施用量0、2.5、5、10、20和40 t/hm2共6个水平,一次施入土壤,5年后调查了茶园土壤pH、电导率 (EC)、可溶性有机碳含量、细菌群落结构变化及它们间的相关关系。   【结果】   施用生物炭5年后,茶园土壤pH提高了0.16~1.11个单位,可溶性有机碳含量提高了52.6%~92.3%,EC值降低了1.85%~47.77%,其中施用10~40 t/hm2生物炭处理的pH值均显著高于0~5 t/hm2处理。施用生物炭5年对土壤性质的改变,进一步影响了细菌群落结构,细菌群落Chao指数、ACE指数表现为随生物炭施用量增加而增加得趋势,Shannon指数呈现先增加后降低的趋势。施用生物炭促进了适宜酸中性或弱碱性环境的节杆菌属、硝化螺旋菌属、黄色杆菌科细菌相对丰度的增加,降低了嗜酸性细菌如酸杆菌属细菌的相对丰度。细菌群落结构与环境因子的关联分析表明,施用0~10 t/hm2生物炭处理细菌群落结构受pH、EC环境因子的影响较大;施用20~40 t/hm2生物炭处理细菌群落结构受土壤可溶性有机碳等环境因子的影响较大;其中硝化螺旋菌属、α-变形菌门、酸杆菌属、康奈斯氏杆菌属等的相对丰度与土壤pH、EC值间具有显著相关性。   【结论】   在酸化茶园施用生物炭5年后,土壤pH、EC和可溶性有机碳含量发生了显著变化,增加了细菌群落多样性指数,且适宜酸中性或弱碱性环境的细菌丰度增加,嗜酸性细菌丰度降低;其中施用0~10 t/hm2生物炭的处理土壤pH、EC是显著影响细菌群落结构的环境因子,施用20~40 t/hm2生物炭的处理土壤可溶性有机碳含量是显著影响细菌群落结构的环境因子。  相似文献   
4.
黄壤是浙江省建德市的重要土地资源,为弥补耕地的不足,近年来建德市对红黄壤低山丘陵进行了大量的开发利用。文章在探讨红黄壤垦植过程中存在的土壤质量管理与生态安全问题的基础上,提出围绕生态安全、土壤改良、提高土地生产力的新垦红黄壤的改良及生态安全技术。  相似文献   
5.
1建国杨梅喜温耐阴,树冠高大,根系分布广,年平均气温在14~21℃,年降雨量600~1000毫米,年平均相对湿度在30%以上,年日照在2000小时左右,土壤疏松,排水良好,PH值4.5~5.5之间的酸性黄壤、红壤土,向阳通风,便于集约经营,交通运输方便的山地,丘陵均可栽培。  相似文献   
6.
据《植物营养与肥料学报》2021年第1期《不同柑桔砧木对锰过量胁迫的耐受性及生理响应》(作者邱洁雅等)报道,土壤pH值影响土壤锰(Mn)有效性,酸性土壤易出现Mn过量问题,我国柑桔主要分布在南方红黄壤区,柑桔园酸性或强酸性土壤比例高,柑桔园土壤Mn过量较普遍。为此,作者研究了4种柑桔砧木对Mn过量胁迫的耐受性和生理响应,以期为Mn过量土壤上适宜砧木的选择提供依据。  相似文献   
7.
[目的]研究399对"一种两收"再生稻的影响。[方法]以适宜丘陵红黄壤种植的丰两优香1号、准两优527、宜优673再生稻品种为材料,分别设置喷施399和不喷施399(CK)2种处理,研究各处理对再生稻根系和产量的影响。[结果]结果表明:施用399使水稻在生育期上延缓成熟,且施后再生稻的总根系数量、白根数量、根鲜重、根干重、根体积大幅度增加,同时在两季总产量上准两优527、丰两优香1号和宜优673品种分别比对照增产6.39%、4.86%、5.94%。[结论]施用399有利于准两优527、丰两优香1号和宜优673再生稻品种再生根的发生。  相似文献   
8.
9.
黄壤为我省主要地带性土壤。黄壤中低产田土分布广、面积大、增产潜力大。提高黄壤中低产田土单位面积产量,对我省农业生产的发展具有重要的意义。1986年冬至1989年,我们在黔西县进行了“黄壤中低产田(地)改良和集约化配套技术研究”,以双马乡驮煤河村民组为中心试验基点,进行大面积生产示范和试验研究,带动了全县低产黄壤改良,获得了显著的增产效果、经济效益和社会效益。  相似文献   
10.
黄壤旱坡地梯化对土壤磷素流失的影响   总被引:9,自引:2,他引:9  
在贵州中部黄壤旱坡地上 ,通过无界径流小区法以及野外坡面径流小区试验 ,对梯化和未梯化的黄壤旱坡地地表径流中磷酸根态磷、颗粒态磷以及生物有效磷的浓度变化 ,以及旱地梯化种植与传统顺坡种植下土壤磷流失量的差异进行了研究。结果表明 ,梯化与未梯化黄壤旱坡地地表径流中颗粒态磷和生物有效磷含量出现显著性的差异 ,旱坡地梯化后地表径流中颗粒态磷的含量减少 17.0 9%~ 5 7.94 % ,生物有效磷含量减少 16.0 1%~3 6.83 %。黄壤旱地土埂梯化种植能明显减少地表径流中颗粒态磷的流失量 ,其年均颗粒态磷的流失量比传统顺坡种植减少 71.64% ,但旱地梯化种植未能明显减少水溶态磷的流失量。土壤磷素水平的提高能明显增加旱坡地磷素的流失潜能 ,黄壤旱地梯化种植结合平衡施肥是减少土壤磷素流失以及保护水体质量的有效途径。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号