首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  完全免费   5篇
     5篇
  2019年   2篇
  2018年   2篇
  2016年   1篇
排序方式: 共有5条查询结果,搜索用时 31 毫秒
1
1.
目前关于土壤有机质(SOM)影响因子的研究多涉及单一或少量因素,缺少环境因子与农田管理相结合的详细分析。为综合分析环境和人为因素对农田SOM的影响,利用2011年采集于典型黑土样区的281个样点和水稻土样区的193个样点,结合相应农田管理调查数据,采用双样本Kolmogorov-Smirnov检验、Kendall τ相关分析、随机森林模型进行对比研究。结果表明,通过综合环境与农田管理措施数据,随机森林方法可以较好地预测农田SOM含量,对其变异的解释度达到80%以上。人为与环境因素对SOM变异的解释能力在两样区间存在差异。SOM含量水平在黑土区受环境因子影响为主,在水稻土区受人为因子主导。相对重要性分析显示黑土区水热条件、黏粒含量影响显著,水稻土区田间管理作用明显。  相似文献
2.
卢宏亮  赵明松  刘斌寅  张 平  陆龙妹 《土壤》2019,51(3):602-608
为探讨随机森林(random forest,RF)模型对土壤属性空间预测的精度,本文以安徽省为例,收集140个土壤样本,利用GIS和RS技术,获取相关的地形因子、遥感植被指数及气候数据,利用RF模型分析土壤有机碳(SOC)含量、土壤容重和土壤黏粒含量与地形因子、遥感植被指数及气候数据之间的关系,并进行空间分布预测。研究结果表明:①RF建模预测中,当节点分裂次数(mtry)值为1,决策树数量(ntree)值分别为100、1 000和100时,获得的SOC含量、土壤容重和土壤黏粒含量RF模型最优;②高程、归一化植被指数(NDVI)、地貌、多尺度山谷平坦指数(MrVBF)和土壤类型是SOC含量的重要预测因子;地貌、年均降水量(MAP)、MrVBF、高程和土壤类型是土壤容重的重要预测因子;高程、MAP、MrVBF和平面曲率是土壤黏粒含量的重要预测因子;③RF模型可以较好地进行土壤属性空间预测,多源环境变量组合可以分别解释SOC含量、土壤容重和土壤黏粒含量的26%、23%和22%;同时RF模型对于土壤类型和地貌等类型变量的处理具有一定优势。研究表明,在大尺度研究区域内,利用RF模型进行土壤属性空间预测有一定的意义。  相似文献
3.
为探索适合热带地形复杂区土壤有机质(SOM)含量的空间预测方法,以海南岛为研究区域,结合地形因子、归一化植被指数、土壤类型、土地利用类型变量,选用普通克里格法(OK)、回归克里格法(RK)、随机森林模型(RF)三种方法对训练集128个样点SOM含量的空间分布规律进行预测,并通过验证集32个验证点比较了三种方法的预测精度。结果表明:(1)0~5 cm土层三种方法的平均预测误差(ME)均接近于0,从均方根预测误差(RMSE)来看,RF(0.8867)RK(0.910 4)OK(0.9641),从决定系数(R~2)来看,RF(0.214 1)RK(0.171 5)OK(0.070 8)。综合以上三个参数,该土层最优拟合模型为RF。同理得出0~20、20~40、40~60 cm土层的最优拟合模型分别为RF、RF、OK。RK和RF能够更好地描述SOM含量局部变异信息;(2)四个土层SOM含量的均值分别为19.67、15.89、10.30、8.07 g kg~(-1),呈现出西南、东北高,西部、东南沿海地区低的空间分布趋势。  相似文献
4.
[目的] 对区域性泥石流敏感性进行分析,为吉林省洮南市泥石流灾害预测研究提出一种高效快捷的分析模型。[方法] 针对现行大多数概率统计模型预测率较低的不足,利用人工智能算法中效果明显的随机森林算法,以吉林省洮南市西北部山区为研究区域,选用高程、坡度、坡向、平面曲率、剖面曲率、河流、归一化差分植被指数、地形湿度指数、土地利用及岩性10个评价因子构建了频率比和随机森林泥石流敏感性评价模型进行对比验证。模型准确性的验证方法采用受试者特征曲线(ROC曲线)及累积频率曲线下面积(area under curve,AUC)。[结果] 随机森林对研究区泥石流敏感性进行分析,并通过GIS将敏感性图分为5个敏感性区域,位于高敏感性区以上的灾害点占82.3%。验证模型成功率及预测率分别为88.4%与90.4%,相较于频率比的成功率及预测率(86.4%和75.1%)效果良好。[结论] 在洮南市北部进行泥石流敏感性分析中,采用随机森林方法进行建模,并利用频率比方法进行对比,结果显示随机森林法结果可靠准确。  相似文献
5.
为了掌握丘陵地区农田土壤有效铁含量及其空间分布,本文以重庆市江津区永兴镇内同源成土母质的典型丘陵(2 km2)为研究区,采集309个土壤样点,利用普通克里格(Ordinary Kriging,OK)、多元线性回归(Multiple Linear Regression,MLR)、随机森林(Random Forest,RF)模型,结合高程、坡度、坡向、谷深、平面曲率、剖面曲率、汇聚指数、相对坡位指数、地形湿度指数等地形因子对土壤有效铁进行空间分布预测,并通过85个验证点评价、筛选预测模型。结果表明:1)土壤有效铁与谷深、地形湿度指数存在极显著水平正相关关系,与坡度、平面曲率、剖面曲率、汇聚指数、相对坡位指数存在极显著水平负相关关系。2)随机森林模型的预测精度明显高于多元线性回归和普通克里格插值,其平均绝对误差为22.33 mg·kg-1、均方根误差为27.98 mg·kg-1、决定系数为0.76,是研究区土壤有效铁含量空间分布的最适预测模型。3)地形湿度指数和坡度是影响该区域土壤有效铁含量空间分布的主要地形因子。土壤有效铁与坡度、谷深、平面曲率、剖面曲率、汇聚指数、相对坡位指数、地形湿度指数均达到极显著水平相关关系。4)研究区土壤有效铁含量范围为3.00~276.97 mg?kg-1,水田有效铁含量大于旱地;土壤有效铁具有较强的空间相关性,土壤有效铁含量空间变异主要受到结构性因素的影响。可见,基于地形因子的随机森林预测模型可以较好地解释丘陵区农田土壤有效铁含量的空间变异,研究结果为丘陵区土壤中、微量元素含量及空间分布预测提供方法借鉴和理论依据。  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号