首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   185篇
  免费   0篇
  国内免费   6篇
林业   2篇
农学   23篇
基础科学   7篇
  25篇
综合类   16篇
农作物   97篇
园艺   5篇
植物保护   16篇
  2021年   3篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   4篇
  2015年   3篇
  2014年   5篇
  2013年   15篇
  2012年   6篇
  2011年   6篇
  2010年   10篇
  2009年   6篇
  2008年   4篇
  2007年   3篇
  2006年   13篇
  2005年   7篇
  2004年   6篇
  2003年   6篇
  2002年   5篇
  2001年   4篇
  2000年   3篇
  1999年   6篇
  1997年   1篇
  1996年   2篇
  1995年   4篇
  1994年   1篇
  1993年   9篇
  1992年   7篇
  1991年   6篇
  1990年   3篇
  1988年   5篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1983年   6篇
  1982年   2篇
  1981年   3篇
  1978年   2篇
  1974年   2篇
  1973年   2篇
  1972年   2篇
  1970年   3篇
  1969年   1篇
排序方式: 共有191条查询结果,搜索用时 140 毫秒
1.
高光谱成像快速检测壳聚糖涂膜草莓可溶性固形物   总被引:7,自引:6,他引:1  
为了对壳聚糖涂膜草莓可溶性固形物含量(soluble solids content, SSC)进行快速检测,该文采用高光谱成像仪(400~1 000 nm)对0,0.5%,1%浓度的壳聚糖(chitosan, CTS)涂膜草莓分别储藏1,2,4 d后进行成像,并测量样本SSC。通过分析SSC发现,0.5%和1%壳聚糖涂膜草莓,其SSC随着储藏天数的增加均高于0浓度壳聚糖涂膜草莓,说明了0.5%和1%壳聚糖涂层抑制了草莓中SSC的降低,能够延长草莓的新鲜口味。随后采用蒙特卡罗-偏最小二乘法(monte carlo-partial least squares, MCPLS)对异常样本进行剔除。对剔除异常样本后的光谱数据进行不同预处理,以确定最优的预处理方法。为提高运行速度和降低数据维数,采用竞争性自适应权重取样法(competitive adaptive reweighted sampling, CARS)和连续投影算法(successive projections algorithm, SPA)进行特征波段选择。最后,采用偏最小二乘回归(partial least square regression, PLSR)和支持向量回归(support vector regression, SVR)法建立回归模型。最终结果表明:SPA-SVR模型效果最佳,0浓度的壳聚糖涂膜的草莓,建模集精度Rc2为0.865,预测集精度Rv2为0.835;0.5%浓度的壳聚糖涂膜的草莓,建模集精度Rc2为0.808,预测集精度Rv2为0.799;1%浓度的壳聚糖涂膜的草莓,建模集精度Rc2为0.834,预测集精度Rv2为0.875。对储藏第4天的部分样本图像进行主成分分析(principal component analysis, PCA),结果显示除第二主成分图像(PC2)中有部分噪声影响外,PC1和PC3均能完整反映草莓信息,且PC3图像明显呈现出不同浓度壳聚糖涂膜草莓的褐变程度,说明不同浓度的壳聚糖涂膜也会对草莓货架期产生不同影响。综上说明利用高光谱成像技术可以实现壳聚糖涂膜草莓SSC快速检测,有效指导草莓保鲜处理。  相似文献   
2.
The influence of variable photoperiods on the feeding activity and fecundity of Galendromus occidentalis (Nesbitt) was studied on a diet of Tetranychus urticae Koch eggs. Starved G. occidentalis females were fed T. urticae eggs under ten 24-h light:dark regimes. Half of the tests started during photophase and the other half during scotophase. T. urticae eggs that were consumed and G. occidentalis eggs that were laid were counted at the end of each photophase and scotophase in a 24 h period. In general, G. occidentalis consumed more T. urticae eggs per h in the first phase of the experiment than in the second, regardless of whether the lights were on or off. In contrast to egg consumption, there were no statistical differences in the mean daily fecundity at the end of the 24-h periods. However, when the experiment was started during photophase, higher fecundity/h was encountered during scotophase than during the photophase. As a result, egg consumption rates were affected by photoperiods in both phases of the experiments. Logistic regression analysis revealed that variable photoperiods and egg consumption did not influence the fecundity of G. occidentalis.  相似文献   
3.
Alfalfa (Medicago sativa L.) is an internationally significant forage crop. Forage yield, lodging resistance and spring vigor are important agronomic traits conditioned by quantitative genetic and environmental effects. The objective of this study was to identify quantitative trait loci (QTL) and molecular markers associated with increased forage yield, resistance to lodging, and spring vigor. A backcross population composed of 128 progeny was developed by crossing the breeding parents DW000577 (lodging susceptible) and NL002724 (lodging-resistant) and back-crossing an individual F1 plant to the maternal parent (i.e. DW000577). A linkage map of NL002724 was developed based upon the segregation of 236 AFLP, SRAP, and SSR markers among the backcross progeny. The markers were distributed among 14 linkage groups, covering an estimated recombination distance of 1497.6 centiMorgans (cM). Replicated clones of both parents and backcross progeny were evaluated in the field for estimated forage yield, lodging, and spring vigor in Washington and Wisconsin during 2007 and 2008. Significant QTL were found for all three traits. In particular, two QTL for lodging resistance were identified that explained ≥14 % of trait variation, and were significant in all years and locations. Major QTL explaining over 25 % of trait variation for forage yield were detected in multiple environments at two separate locations on chromosome III. Several QTL for spring vigor were located in the same or similar positions as QTL for forage yield, possibly explaining the significant correlation between these traits. Molecular markers associated with the aforementioned QTL were also identified.  相似文献   
4.
Visible and near infrared (vis/NIR) spectroscopy combined with chemometrics were investigated to evaluate the effects of simulated transport vibration levels on damage of tomato fruit. A total of 280 tomato samples were randomly divided into 5 groups; each group was subjected to vibration at different acceleration levels. A total of 230 samples (46 from each group) were selected as a calibration set; whereas 50 samples (10 from each group) were selected as a prediction set. Raw spectra, differentiation (the first derivative) spectra, extended multiplicative scatter correction (EMSC) processed spectra and standard normal variant combined with detrending (SNV–DT) processed spectra were used for calibration models. SNV–DT processed spectra had the best performance using for partial least squares (PLS) analysis. The PLS analysis was implemented to calibrate models with different wavelength bands including visible, short-wave near infrared (SWNIR) and long-wave near infrared (LWNIR) regions. The best PLS model was obtained in the vis/NIR (600–1600 nm) region. Using a grid search technique and radial basis function (RBF) kernel, four least squares support vector machine (LS–SVM) models with different latent variables (7, 8, 9, and 10 LVs) were compared. The optimal model was obtained with 9 LVs and the correlation coefficient (r), root mean square error of prediction (RMSEP) and bias for the best prediction by LS–SVM were 0.984, 0.137 and 0.003, respectively. The results showed that vis/NIR spectroscopy could be applied as a reliable and rapid method for predicting the effect of vibration levels on tissue damage of tomato fruit.  相似文献   
5.
6.
Conventional potato breeding refers to development of new cultivars from sexual crosses followed by clonal propagation and selection. Nearly all new varieties of potato still emerge from this process free from modern technologies of gene insertion. Conventional breeding remains the most important force for introduction of new phenotypes underlain by new genes. However, these come from already selected potato breeding lines or named varieties or from wild potatoes or more distant solanaceous relatives that are amenable to somatic hybridization. Potato breeders are constantly searching for new germplasm, in part because the potato as a crop still remains highly vulnerable to biotic and abiotic stresses. In addition, the widening of the genetic base is seen as a means of increasing heterozygosity. Despite a highly conscious import of genetic variability, commercial varieties often emerge from a relatively restricted genetic pool. This is due to the long list of traits that must fall within narrow boundaries of performance. The potato must be able to navigate the conditions of modern agriculture, withstand unusual weather events, and arrive at harvest with skin and flesh appealing to the market for which it is intended. A storage period must also be endured during which appearance and suitability for processing or the consumer’s kitchen must be maintained. A lapse in any of these phases usually signals that a new variety will exit commercial use as fast as it entered. The inconvenient accompaniment of introducing exotic genetic variation is that the breeding products are often outside of the targeted market niche. It is not surprising that many new varieties stem from crosses from older named varieties. Efforts to diversify are in conflict with conformism leading to relatively high co-ancestry coefficients between advanced breeding lines. Conventional breeding has advanced through the last hundred years the appearance, sugar status, Verticillium resistance, and yield of larger sized tubers in statistically robust ways. Potato arrived from the new world and very quickly became the secret solution to famine for the poor by virtue of its productivity and nutrient content. Meanwhile, in modern times, challenges to the consumption of potato come from a sedentary and carbohydrate over-satiated society. The genetic repository of potato germplasm is so rich that a new era of potato varieties beneficial to health may be at hand. Conventional breeding will certainly be a major part of this.  相似文献   
7.
Fifteen alfalfa populations consisting of six public cultivars and nine historically recognized sources of alfalfa germplasm in North American cultivars were examined using sequence related amplified polymorphisms (SRAPs). Three bulk DNA samples from each population were evaluated with fourteen different SRAP primer pairs. This resulted in 249 different amplicons, of which over 90% were polymorphic. A dendrogram from the analysis suggests that the public cultivars are quite diverse from all the historical sources of germplasm. The highest mean genetic similarity among the nine original sources of Medicago germplasm was 0.85 between PI 536535 (Peruvian) and 536536 (Indian), while the lowest (0.47) was between PI 560333 (M. falcata) and 536539 (African). The highest mean genetic similarity among the nine original sources of Medicago germplasm and the public alfalfa cultivars was 0.78 between PI 536532 (Ladak) and Vernal, while the lowest (0.59) was between PI 536539 (African) and Oneida. Relationships based on SRAP analysis appear to generally concur with expected relationships based on fall dormancy. This report demonstrates that SRAPs are a promising marker system for detecting polymorphisms in alfalfa.  相似文献   
8.
We sampled soil at four sites in the Laguna Mountains in the western Sonoran Desert to test the effects of site and sample location (between or beneath plants) on fatty acid methyl ester (FAME) and carbon substrate ulilization (Biolog) profiles. The four sites differed in elevation, soil type, plant community composition, and plant percent cover. Soil pH decreased and plant density increased with elevation. Fertile islands, defined as areas beneath plants with greater soil resources than bare areas, are present at all sites, but are most pronounced at lower elevations. Consistent with this pattern, fertile islands had the greatest influence on FAME and Biolog profiles at lower elevations. Based on the use of FAME biomarker and principal components analyses, we found that soil microbial communities between plants at the lowest elevation had proportionally more Gram-negative bacteria than all other soils. At the higher elevation sites there were few differences in FAME profiles of soils sampled between vs. beneath plants. Differences in FAME profiles under plants among the four sites were small, suggesting that the plant influence per se is more important than plant type in controlling FAME profiles. Since microbial biomass carbon was correlated with FAME number (r=0.85,P<0.0001) and with FAME named (r=0.88,P<0.0001) and total areas (r=0.84,P<0.0001), we standardized the FAME data to ensure that differences in FAME profiles among samples were not the result of differences in microbial biomass. Differences in microbial substrate utilization profiles among sampling locations were greatest between samples taken under vs. between plants at the two lower elevation sites. Microbial substrate utilization profiles, therefore, also seem to be influenced more by the presence of plants than by specific plant type.  相似文献   
9.
Sodium N-methyldithiocarbamate (metam sodium) and 1,3 dichloropropene are widely used in potato production for the control of soil-borne pathogens, weeds, and plant parasitic nematodes that reduce crop yield and quality. Soil fumigation with metam sodium has been shown in microcosm studies to significantly reduce soil microbial populations and important soil processes such as C and N mineralization. However, few published data report the impact of metam sodium on microbial populations and activities in potato production systems under field conditions. Fall-planted white mustard (Brassica hirta) and sudangrass (Sorghum sudanense) cover crops may serve as an alternative to soil fumigation. The effect of metam sodium and cover crops was determined on soil microbial populations, soil-borne pathogens (Verticillium dahliae, Pythium spp., and Fusarium spp.), free-living and plant-parasitic nematodes, and C and N mineralization potentials under potato production on five soil types in the Columbia Basin of Eastern Washington. Microbial biomass C was 8–23% greater in cover crop treatments compared to those fumigated with metam sodium among the soil types tested. Replacing fumigation with cover crops did not significantly affect C or N mineralization potentials. Cumulative N mineralized over a 49-day laboratory incubation averaged 18 mg NO3-N kg−1 soil across all soil types and treatments. There was a general trend for N mineralized from fumigated treatments to be lower than cover-cropped treatments. Soil fungal populations and free-living nematode levels were significantly lowered in fumigated field trials compared to cover-cropped treatments. Fumigation among the five soil types significantly reduced Pythium spp. by 97%, Fusarium spp. by 84%, and V. dahliae by 56% compared to the mustard cover crop treatment. The percentage of bacteria and fungi surviving fumigation was greater for fine- than coarse-textured soils, suggesting physical protection of organisms within the soil matrix or a reduced penetration and distribution of the fumigants. This suggests the potential need for a higher rate of fumigant to be used in fine-textured soils to obtain comparable reductions in soil-borne pathogens.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号