首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   4篇
  国内免费   4篇
基础科学   1篇
  8篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2019年   2篇
  2018年   2篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
针对实际复杂田间环境下杂草与作物识别精度低和实时性差的问题,为减少弱光环境对分割识别效果的影响,实现甜菜与杂草的实时精确分割识别,该文首先将可见光图像进行对比度增强,再将近红外与可见光图像融合为4通道图像;将深度可分离卷积以及残差块构成分割识别模型的卷积层,减少模型参数量及计算量,构建编码与解码结构并融合底层特征,细化分割边界。以分割识别精度、参数量以及运行效率为评价指标,通过设置不同宽度系数以及输入图像分辨率选出最优模型。试验结果表明:本文模型的平均交并比达到87.58%,平均像素准确率为99.19%,帧频可达42.064帧/s,参数量仅为525 763,具有较高分割识别精度和较好实时性。该方法有效实现了甜菜与杂草的精确实时识别,可为后续机器人精确除草提供理论参考。  相似文献   
2.
基于高光谱图像及深度特征的大米蛋白质含量预测模型   总被引:6,自引:6,他引:0  
为了充分挖掘高光谱图像的光谱信息和图像信息,实现大米中蛋白质含量的无损检测,该文提出一种堆叠自动编码器(stackedauto-encoder,SAE)提取高光谱图像深度特征的方法,在高温(45℃)高湿(95%相对湿度)条件下对市售大米进行放置处理,以6组不同放置时间(0,24,48,72,96和120h)共420个大米样本(每组70个)为对象,利用可见光/近红外高光谱成像仪采集高光谱图像(400~1 000 nm,共478个波段),采用阈值分割法获取样本高光谱图像掩膜,分别提取掩膜后高光谱图像感兴趣区域(region of interest,ROI)的平均光谱信息和图像信息。应用多项式平滑(savitzky-golay,SG)对获取的光谱曲线进行预处理,利用SAE提取光谱深度特征,采用支持向量机回归(support vector regression,SVR)建立预测模型,结果表明训练集决定系数RC2、训练集均方根误差RMSEC、预测集决定系数RP2和预测集均方根误差RMSEP分别为0.976 2、0.068 6 g/(100 g)、0.939 2和0.115 3 g/(100 g)。将图像尺寸统一为28像素?28像素的灰度图并扁平化处理,利用SAE提取图像深度特征,结果表明RC2、RMSEC、RP2和RMSEP分别为0.915 4、0.051 0 g/(100 g)、0.821 0和0.111 8 g/(100 g)。进一步融合光谱信息和图像信息,结果表明RC2、RMSEC、RP2和RMSEP分别为0.971 0、0.077 2 g/(100 g)、0.964 4和0.085 1 g/(100 g),相较于光谱信息,RP2提升幅度2.68%;相较于图像信息,RP2提升幅度17.47%。研究表明,充分挖掘大米样本高光谱图像中的光谱信息和图像信息并进行融合,利用SAE提取光谱-图像融合深度特征,可有效提高模型的预测精度,为大米蛋白质含量无损检测提供了理论依据,具有良好的应用前景。  相似文献   
3.
基于低秩自动编码器及高光谱图像的茶叶品种鉴别   总被引:3,自引:0,他引:3  
提出一种基于低秩自动编码器及高光谱图像技术的茶叶品种鉴别方法。应用高光谱成像系统采集5个品种的茶叶样本高光谱图像数据,利用ENVI软件确定高光谱图像的感兴趣区域(ROI),并提取茶叶样本在ROI的平均光谱作为该样本的原始光谱数据。由于高光谱信息量大、冗余性强且存在噪声,运用自动编码器和低秩矩阵恢复结合的低秩自动编码器(LR-SAE)对原始光谱数据进行降维,在自动编码器降维基础上加入去噪处理,提取鲁棒判别特征。在此基础上应用支持向量机(SVM)和Softmax分类算法对降维后的茶叶样本高光谱数据分类。通过5折交叉试验验证,LR-SAE-SVM模型的预测集准确率达到99.37%,SAE-SVM模型的预测集准确率为98.82%;LR-SAE-Softmax模型的预测集准确率达99.04%,SAE-Softmax模型的预测集准确率为97.99%。研究结果表明,相较于未进行去噪处理的传统自动编码器,LR-SAE降维之后的分类建模效果有所提升,将其应用于茶叶品种鉴别是可行、高效的。  相似文献   
4.
针对传统Alex Net模型参数大、特征尺度单一的问题,该文提出一种空洞卷积与全局池化相结合的多尺度特征融合卷积神经网络识别模型。通过对初始卷积层的卷积核进行膨胀,以增大其感受野而不改变参数计算量,并采用全局池化代替传统的全连接层来减少模型的参数。通过设置不同膨胀系数的初始卷积层卷积核与全局池化层类型,以及设置不同Batch Size,得到8种改进模型,用于训练识别共12种农作物幼苗与杂草,并从建立的模型中选出最优模型。改进后的最优模型与传统Alex Net模型相比,仅经过4次训练迭代,就能达到90%以上的识别准确率,平均测试识别准确率达到98.80%,分类成功指数达到96.84%,模型内存需求减少为4.20 MB。实际田间预测野芥与雀麦幼苗的准确率都能达到75%左右,说明该文最优模型对正常情况下的幼苗识别性能较好,但对复杂黑暗背景下的甜菜幼苗准确率为60%,对恶劣背景下的识别性能还有待提升。由于模型使用了更宽的网络结构,增加了特征图的多尺度融合,保持对输入空间变换的不变性,故对正常情况下不同作物幼苗与杂草的识别能力较强。该文改进模型能达到较高的平均识别准确率及分类成功率,可为后续深入探索复杂田间背景下的杂草识别以及杂草与幼苗识别装置的研制打下基础。  相似文献   
5.
采用高光谱图像深度特征检测水稻种子活力等级   总被引:2,自引:1,他引:1  
为实现水稻种子活力的准确检测,该文研究了一种基于高光谱图像技术结合深度学习的高精度检测方法。采用人工加速老化的方式得到老化0,1,2和3 d的1 200个水稻种子样本,使用高光谱成像设备获取不同老化天数样本的高光谱图像,并从单个样本区域提取其光谱信息。随后对1200个样本进行发芽试验,根据发芽试验结果将所有样本划分为高活力、低活力和无活力3个等级。采用小波阈值去噪(Wavelet Threshold Denoising,WTD)结合一阶导数(First/1~(st) Derivative,FD)的方法(WTD-FD)对原始光谱进行预处理,使用主成分分析(Principal Component Analysis,PCA)和堆叠自动编码器(Stacked Auto-Encoder,SAE)分别从预处理光谱中提取特征变量。分别基于PCA和SAE特征变量构建支持向量机(Support Vector Machine,SVM)模型,并根据模型准确率确定较佳模型,最后使用灰狼优化算法(Grey Wolf Optimizer,GWO)对选择的模型进行参数优化。结果显示WTD-FD对原始光谱的预处理是有效的,使用从预处理光谱中提取的SAE非线性深层特征相比于PCA线性特征更具有代表性,基于其建立的SAE-SVM模型的准确率达到96.47%。SAE-SVM模型经过GWO优化之后,模型准确率提高到98.75%。研究结果表明,高光谱图像技术结合深度学习方法对水稻种子活力等级准确检测具有指导意义。  相似文献   
6.
基于改进MobileNet-V2的田间农作物叶片病害识别   总被引:9,自引:9,他引:0       下载免费PDF全文
农作物病害是造成粮食产量下降的重要因素,利用智能化手段准确地识别农作物病害有利于病害的及时防治,该研究基于改进的MobileNet-V2识别复杂背景下的农作物病害,对未来覆盖各种作物的智能化病害识别工作具有重要意义。首先创建含有11类病害叶片及4类健康叶片的农作物数据集,采用数据增强操作构造不同的识别场景。其次在原始模型MobileNet-V2的基础上,嵌入轻量型的坐标注意力机制,建立通道注意力与位置信息的依赖关系。然后对网络中不同尺寸的特征图采取上采样融合操作,构建兼具网络高、低层信息的新特征图。此外,采用分组卷积并删除模型中不必要的分类层,减少模型参数量。试验结果表明:改进模型的参数量为2.30 MB,改进模型的识别准确率在背景复杂的农作物叶片病害数据集中达到了92.20%,较改进前提高了2.91个百分点。相比EfficientNet-b0、ResNet-50、ShuffleNet-V2等经典卷积神经网络架构,改进模型不仅达到了更高的识别准确率,还具有更平稳的收敛过程以及更少的参数。该研究改进的模型较好地平衡了模型的复杂度和识别准确率,为深度学习模型移植至田间移动病害检测设备提供了思路。  相似文献   
7.
为了快速精准地识别复杂果园环境下的葡萄目标,该研究基于YOLOv5s提出一种改进的葡萄检测模型(MRWYOLOv5s)。首先,为了减少模型参数量,采用轻量型网络MobileNetv3作为特征提取网络,并在MobileNetv3的bneck结构中嵌入坐标注意力模块(coordinate attention,CA)以加强网络的特征提取能力;其次,在颈部网络中引入RepVGG Block,融合多分支特征提升模型的检测精度,并利用RepVGG Block的结构重参数化进一步加快模型的推理速度;最后,采用基于动态非单调聚焦机制的损失(wise intersection over union loss,WIoU Loss)作为边界框回归损失函数,加速网络收敛并提高模型的检测准确率。结果表明,改进的MRW-YOLOv5s模型参数量仅为7.56 M,在测试集上的平均精度均值(mean average precision,mAP)达到97.74%,相较于原YOLOv5s模型提升了2.32个百分点,平均每幅图片的检测时间为10.03 ms,比原YOLOv5s模型减少了6.13 ms。与主流的目标检测模型S...  相似文献   
8.
基于无人机图像的多尺度感知麦穗计数方法   总被引:3,自引:3,他引:0       下载免费PDF全文
小麦是世界上重要的粮食作物,其产量的及时、准确预估对世界粮食安全至关重要,小麦穗数是估产的重要数据,因此该研究通过构建普适麦穗计数网络(Wheat Ear Counting Network,WECnet)对灌浆期小麦进行精准的计数与密度预估。选用多个国家不同品种的麦穗图像进行训练,并且对数据集进行增强,以保证麦穗多样性。在原始人群计数网络CSRnet基础上,针对小麦图像特点构建WECnet网络。在网络前端,通过使用VGG19的前12层进行特征提取,同时与上下文语义特征进行融合,充分提取麦穗的特征信息。后端网络使用不同空洞率的卷积加大感受野,输出高质量的密度图。为了验证模型的可迁移性与普适性,该研究通过基于全球小麦数据集训练好的模型对无人机实拍的麦田图像进行计数。试验结果表明:在全球小麦数据集上,WECnet训练模型的决定系数、均方根误差(Root Mean Square Error,RMSE)与平均绝对误差(Mean Absolute Error,MAE)分别达到了0.95、6.1、4.78。在无人机拍摄图像计数中,决定系数达到0.886,整体错误率仅为0.23%,平均单幅小麦图像计数时间为32 ms,计数速度与精度均表现优异。结果表明,普适田间小麦计数模型WECnet可以对无人机获取图像中小麦的准确计数及密度预估提供数据参考。  相似文献   
9.
快速精准识别棚内草莓的改进YOLOv4-Tiny模型   总被引:5,自引:5,他引:0       下载免费PDF全文
为了实现棚内草莓果实的快速精准识别,该研究提出一种基于改进YOLOv4-Tiny的草莓检测模型。首先,为了大幅度减少模型计算量,采用轻量型网络GhostNet作为特征提取网络,并在GhostBottleneck结构中嵌入卷积注意力模块以加强网络的特征提取能力;其次,在颈部网络中添加空间金字塔池化模块和特征金字塔网络结构,融合多尺度特征提升小目标草莓的检测效果;最后,采用高效交并比损失作为边界框回归损失函数,加速网络收敛并提高模型的检测准确率。结果表明,改进YOLOv4-Tiny模型权重大小仅为4.68 MB,平均每幅图片的检测时间为5.63 ms,在测试集上的平均精度均值达到92.62%,相较于原YOLOv4-Tiny模型提升了5.77个百分点。与主流的目标检测模型SSD、CenterNet、YOLOv3、YOLOv4和YOLOv5s相比,改进YOLOv4-Tiny模型平均精度均值分别高出9.11、4.80、2.26、1.22、1.91个百分点,并且模型权重大小和检测速度方面均具有绝对优势,该研究可为后续果实智能化采摘提供技术支撑。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号