首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   1篇
  国内免费   1篇
基础科学   9篇
  1篇
  2023年   2篇
  2022年   2篇
  2021年   2篇
  2020年   2篇
  2018年   2篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
针对实际环境中由于农业机械(简称农机)作业过程的作业量以及土壤条件的变化等不确定性因素的影响,导致协同作业跟随农机的行驶工况不稳定、跟随协同作业响应慢、控制困难等问题,在综合考虑不确定性以及响应性能的基础上,提出了一种农机跟随分层控制架构,搭建农机田间作业下的纵向跟随动力学模型,并以间距保持、速度跟随、燃油经济性、加速度跟随性能为目标,进行基于模型预测控制(MPC)算法的上层控制器推导,基于前馈以及PI反馈的控制器作为下层控制,以上层控制器获得的控制加速度为目标,进行力矩(电流)跟踪,在保证抗不确定性以及干扰噪声的同时,提高跟随农机的响应能力。通过Matlab/Simulink仿真和田间试验验证,结果表明,该控制方法可以有效解决农机作业的跟随控制问题,与滑模变结构控制器相比,能够实现稳定跟随行驶,且速度误差和加速度误差更小,速度误差控制在-0.29132~0.18001m/s,加速度误差控制在-0.05678~0.05628m/s2,稳定跟随距离误差为±0.45m,具有良好的跟随效果。  相似文献   
2.
针对现有丘陵山区小型玉米收获机在复杂田间环境收获果穗时,存在适应性差、剥皮装置籽粒损伤率高、剥净率低等问题,设计了具有双液压姿态调整的剥皮装置,其剥皮辊采用鱼鳞+双螺旋式橡胶辊组合,在提高剥净率的同时,减小了籽粒损失率。对玉米果穗剥皮装置进行了性能分析和参数优化,以便达到降低籽粒损失率、提高果穗剥净率的目的。采用二次回归正交组合试验方案,以剥皮辊转速、作业行驶速度、剥皮装置与水平面倾角以及压送装置转速为试验因素,以籽粒损失率和果穗剥净率为试验指标进行试验,建立参数优化数学模型。利用Design-Expert中Optimization模块进行优化,结果表明:当剥皮辊转速为853.081r/min、行驶速度为0.799 955m/s、倾角为16°、压送装置为500r/min时,籽粒损失率为0.204 945%,剥净率为98.1179%。为方便样机的加工与制作,对优化参数进行圆整处理,即剥皮辊转速为850r/min,行驶速度为0.8m/s,倾角为16°,压送装置为500r/min,并进行样机试验,结果表明:优化参数满足山地丘陵地区玉米果穗收获相关技术要求。  相似文献   
3.
生态沃土机械化耕作对两熟区土壤理化特性的短期影响   总被引:2,自引:0,他引:2  
以4年为一周期,设计一种生态沃土机械化耕作模式(MET),周期内将翻耕、苗带旋耕、免耕、深松4种不同的耕作措施组合,对土壤进行适度耕作,并以连续免耕(CNT)和传统翻耕(CCT)为对照,研究MET对小麦玉米两熟区不同耕层土壤理化特性的短期影响。结果表明:MET能够显著提高土壤结构质量,增加土壤肥力,避免土壤板结,生态效应和沃土效果显著。显著增加0~30cm土层土壤大团聚体含量,提高土壤结构稳定性,平均水稳性团聚体含量分别比CNT和CCT高8.2%和30.4%;有效降低0~30cm土层土壤容重,平均容重分别比CNT和CCT小0.089、0.125g/cm3;增加0~30cm土层全氮、速效磷和速效钾含量,对碱解氮含量影响不显著;增加土壤有机碳含量,平均有机碳含量分别比CNT和CCT高0.36、0.61g/kg,并且各层之间有机碳含量分布较均衡,CNT只增加0~10cm土层有机碳含量,CCT只增加10~20cm土层有机碳含量。MET显著增加小麦的平均单株分蘖数、有效穗粒数和千粒质量,从而显著增加小麦产量,分别比CNT和CCT增产14%和14.9%;小麦播前进行的耕作有一定的后效,对玉米产量有影响,MET与CNT通过增加玉米的有效穗粒数和千粒质量,增加玉米产量,两者产量的差异不显著,但均显著高于CCT,分别高7.4%和3.7%。  相似文献   
4.
通过鲁中平原井灌区小麦-玉米周年生产现有规模化经营主体经营现状的调研,对影响小麦-玉米全程机械化生产的种植规模、种植方式、机具配备、机械作业过程及机械作业成本效益等进行分析总结,提出一种适合鲁中平原井灌区小麦-玉米全程机械规模化生产的规范化作业技术,并对机械化作业薄弱环节提出了解决思路及对策。  相似文献   
5.
为解决在滴灌带浅埋铺设过程中,当机具紧急停车时滴灌带易产生松弛拥堵等现象,以及铺设装置对地形适应能力差等问题,设计了一种适用于玉米播种机且具备自动锁紧功能的滴灌带浅埋铺设装置。阐述了该滴灌带浅埋铺设装置的基本结构和工作原理,并对关键部件进行了理论分析与设计。对滴灌带卷盘转轴进行模态分析表明,该轴在正常作业时不会产生共振现象,并确定了滴灌带输送与自动锁紧装置、仿形装置和开沟铺设装置的关键结构和工作参数。依据玉米宽窄行种植模式要求,将滴灌带铺设装置集成在玉米播种机上并进行田间试验。结果表明:当机组作业速度为4~6 km/h时,滴灌带输送顺畅,铺设深度合格率为93.0%,铺设深度变异系数为22.3%,覆土量为619.5 g,能够满足滴灌带浅埋铺设的要求,当机组紧急停车时,滴灌带铺设自动锁紧装置及时锁紧,有效防止了滴灌带的松弛、拥堵现象。  相似文献   
6.
大豆窄行密植播种机单盘双行气吸式排种器设计   总被引:4,自引:3,他引:1  
为满足大豆窄行密植播种作业要求,解决传统大豆播种机窄行密植行距过大,不易调节,排种性能差等问题,设计了一种单盘双行气吸式排种器,阐述了其基本结构与工作原理,并对工作过程及关键部件进行了理论分析,确定了影响排种性能的主要因素,利用搭建的单盘双行气吸式排种器试验装置进行单因素试验,得到排种性能较好情况时负压真空度、排种盘转速以及单圈吸种孔数的合理变化范围。以负压真空度、排种盘转速和单圈吸种孔数为试验因素,以合格指数、漏播指数和重播指数为指标进行3因素3水平正交试验。结果表明:对合格指数、漏播指数和重播指数各指标影响最显著的因素分别为排种盘转速、负压真空度、负压真空度;当参数组合为单圈吸种孔数64孔、排种盘转速18 r/min、负压真空度5 kPa时,内圈合格指数为98.45%,重播指数为0.72%,漏播指数为0.53%;外圈合格指数为97.82%,重播指数为0.63%,漏播指数为1.35%,对该因素组合进行试验验证,各指标优于行业标准要求。该文设计的单盘双行气吸式排种器实现了播种单体120 mm窄行密植播种,排种性能好,为黄淮海地区大豆密植播种机的研发提供参考。  相似文献   
7.
穗茎兼收型玉米联合收获机部件多,质量大,车架作为整机的重要支撑结构,需要满足强度和刚度要求。在ansys中对车架进行建模,静力学分析得到其应力和应变,验证其是否满足要求。得到最大应力位置点,可经常检修避免其因变形而失效。模态分析求得车架振动固有频率,避免产生共振。  相似文献   
8.
条带对行主动式玉米免耕播种防堵装置设计与试验   总被引:1,自引:0,他引:1  
针对我国黄淮海地区小麦秸秆覆盖地玉米免耕播种机高速作业时开沟器易堵塞、播种质量差等问题,基于旋耕防堵理论设计一种浅旋条带对行主动式防堵装置。根据黄淮海地区小麦玉米种植模式中小麦苗带状况,对防堵装置的刀型排布结构和刀轴转速进行设计;从秸秆流动、抛撒轨迹和受力角度进行分析,确定防堵装置结构参数设计的合理性,并对影响其性能的关键因素进行土槽试验;选取刀轴间距、刀轴转速和机具前进速度为影响因素,以秸秆清秸率和动土率为性能评价指标,进行离散元模拟仿真和多因素正交试验,对影响作业性能刀轴间距和防堵装置工作参数进行优化。仿真试验结果表明,在刀轴转速为800r/min、刀轴间距为70mm、机具前进速度为7km/h时,综合作业质量最优;对优化结果进行玉米播种田间试验,在秸秆覆盖量为1.02kg/m2,前进速度为8km/h时,秸秆清秸率为91.85%,沟深稳定性为86.67%,动土率为26.47%,可满足高速作业要求。  相似文献   
9.
在生产过程中,小麦、玉米接茬轮作的种植模式对机械化作业生产具有较大的影响。为此,针对国内现有冬小麦和夏玉米的种植模式、冬小麦-夏玉米接茬轮作的种植模式进行分析总结,分析现有种植模式对小麦、玉米机械化作业的影响,指出现有种植模式与机械作业不配套的问题所在,对推进各地两熟区种植机械化栽培模式的规范化、加快全程机械化发展具有重要意义。最终,形成了以作物种植和机械作业配套为基础的农机农艺相融合的全程机械化生产模式。  相似文献   
10.
针对黄淮海地区玉米免耕播种作业时,过量小麦秸秆残茬堵塞开沟器的问题,提出一种以拨离残茬和浅旋根茬形式实现苗床清整的斜置式防堵装置。通过理论分析对防堵装置结构参数进行设计,确定了各参数的范围和相互关系,并根据装置结构对耕刀拨茬入土和脱茬离土的过程进行受力分析,确定了影响工作性能的因素。运用离散元方法模拟防堵装置在田间作业过程,以秸秆清除率、土壤扰动系数和功耗为评价指标,对装置倾角、转速和前进速度进行回归分析和显著性检验,确定了各因素对评价指标的影响及主次顺序。通过对回归模型进行多目标函数优化求解,得到最优参数组合为:转速400r/min、前进速度6km/h、倾角18.5°,此时秸秆清除率为74.5%、土壤扰动系数为34.7%、功耗为1.36kW。以优化得到的参数对装置进行土槽试验,试验结果表明:转速为400r/min、前进速度6km/h、倾角18.5°时,秸秆清除率为92.5%、土壤扰动系数为29.6%、功耗为1.51kW,试验结果与仿真试验优化结果相吻合,满足设计要求。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号