首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   1篇
  2篇
综合类   1篇
植物保护   4篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   3篇
排序方式: 共有7条查询结果,搜索用时 46 毫秒
1
1.
为了探明现代长期集约化生产和耕作管理模式下土壤物理状态的变化特征,对关中地区农田0~60 cm剖面范围内的土壤物理特性进行了研究。结果显示:(1) 土壤剖面容重呈现先增大后减小的变化趋势,表层0~10 cm土壤容重最小,为1.34 g·cm-3,20~40 cm土层容重高达1.67 g·cm-3,达到了制约根系延伸的极限容重;(2) 土壤紧实度随着剖面深度增加逐渐增大,0~15 cm、15~25 cm、25~45 cm土层范围内的平均值分别为482 kPa、1 647 kPa、2 268 kPa;(3) 土壤饱和导水率随着土层深度增加而逐渐减小,其中0~10 cm土层的饱和导水率最高,平均为0.968 mm·min-1,且各土层之间的差异达到显著水平。研究表明只有0~10 cm土层土壤结构性较好,而10 cm以下土壤的物理状态具有明显的退化趋势,制约着作物根系的延伸、气体交换和水分的入渗,应予以足够的重视。  相似文献   
2.
保水剂对土壤持水特性的作用机理研究   总被引:6,自引:0,他引:6  
分别将B1(北京华瑞祥科技有限公司高吸水树脂保水剂)、B2(广东东莞市安信保水有限公司农林保水剂)、B3(唐山博亚科技工业开发有限责任公司的高能抗旱保水剂)3种保水剂以不同用量(0.05%、0.10%和0.50%)施入无团聚体孔隙的风沙土中,测定各处理土壤在不同吸力时的含水量,并用V-G模型拟合各土壤水分特性曲线,获得各处理土壤的水分特性曲线参数和主要水分常数等结果,以期揭示使用保水剂在改善土壤持水性方面的作用特征和机理。结果表明:1使用保水剂后,除土壤无效水部分无显著变化外,各处理土壤饱和含水量、田间持水量、重力水和有效水部分均显著增加,保水剂用量为0.50%时处理土壤的田间持水量比对照高3~4.7倍,使用保水剂显著改善了土壤中、低水吸力段的持水容量,即土壤的"孔隙"持水部分。2各处理土壤的水分特征曲线右移,各吸力段的持水容量明显增加,n值均小于对照,表明使用保水剂显著增大了在失水过程中土壤的持水能力。3使用保水剂后,各处理土壤增加的吸水量主要来源于重力水和有效水,保水剂用量为0.05%时,各处理土壤重力水所占比重高于60%,随着保水剂用量增加,重力水所占比重下降,有效水分所占比重提高,表明保水剂对土壤持水特性的作用机理主要体现为增加了土壤的"毛管孔隙"持水比例,即在低使用量时显著改善土壤重力水部分,随着保水剂使用量的增加则显著增加土壤有效水部分。4综合比较保水剂类型和对土壤持水能力的改善作用,B3型保水剂在使用量为0.5%时的改善效果最好。由此得出,化学保水剂尽管是一种具有很强分子吸水能力的基质,却在土壤中能够极大地改变土壤"孔隙"持水性,增加土壤有效水贮量,应当受到应有的重视和广泛使用。  相似文献   
3.
渭北果园土壤有机质及酶活性研究   总被引:2,自引:0,他引:2  
为了探讨渭北果园土壤生物质量演化趋势,分析制约地区苹果可持续发展的土壤因素,在渭北旱塬果区选择了<10 a、10~20 a、>20 a园龄段苹果园各3个,选用农田土壤作为对照,研究0~100 cm范围内土壤有机质、过氧化氢酶、脲酶、碱性磷酸酶活性的变化趋势。结果表明,随着果树种植年限的增加,果园土壤有机质含量仅在表层0~20 cm有不同程度地累积趋势,且在>20 a果园累积较为明显;20~40 cm土层处有机质呈现在植果初期递减,20 a后逐渐增加的趋势;果园土壤3种酶活性变化差异主要体现在0~40 cm土层范围,过氧化氢酶活性在0~40 cm呈现递减趋势,且在0~100 cm土层显著高于农田土壤;脲酶活性在0~40 cm有不同程度递增过程,碱性磷酸酶活性在0~40 cm也呈现出相对增高的态势。相关性分析表明土壤有机质与3种酶之间存在着极显著相关。由此得出,渭北地区果树对土壤生物质量的影响主要体现在0~40 cm范围,果园土壤过氧化氢酶活性显著递减和表层土壤脲酶活性增加可能会对苹果树生长产生一定影响。  相似文献   
4.
干旱季节渭北果园土壤水分时空变化特征   总被引:2,自引:0,他引:2  
针对渭北旱塬干旱季节主要发生在春季到夏初,制约苹果早期生长发育的客观实际,对渭北旱塬苹果园和农田从3月初到5月底,0~100 cm土壤含水量时空变化进行了研究。结果表明:冬春季渭北果园土壤含水量明显高于农田,进入春季随着果树萌发并进入生长旺盛季节,果园土壤水分消耗较小麦农田更为明显,在0~100cm果园土壤耗水量显著,其中5月份0~60 cm土壤水分消耗更加明显。而农田土壤水分消耗层主要在0~30 cm。相对于农田而言,冬春季渭北果园土壤表现出极为明显的保墒性,有助于缓解春旱的威胁;而春季到夏初则表现为极为显著的土壤耗水性,土壤干燥化趋势明显,5月初为果园土壤水分管理的关键时期。  相似文献   
5.
不同肥力水平土壤团聚体的稳定性及对氮肥盐溶液的响应   总被引:7,自引:2,他引:5  
在室内利用筛分技术研究了关中地区相同质地类型3个不同肥力水平土团聚体的组成及其稳定性,并在4个不同浓度氯化铵溶液中进行湿筛,探讨了不同肥力土壤团聚体对盐溶液的反应特征及抗化学物质分散的能力,以便揭示长期施用无机氮肥对土壤团聚体的作用与影响。结果表明,干、 湿筛结果显示3个肥力水平土壤直径>0.25 mm团聚体的含量均随肥力水平的升高显著增加,供试土团聚体的水稳性较差,湿筛后直径<0.25 mm的微团聚体含量在85%以上,而富有农学价值的直径在15 mm的水稳性团聚体在高肥力土壤中含量仅为2.80%,中肥力土壤为1.47%,低肥力土壤为0.84%。3种肥力土壤团聚体组成受氯化铵溶液浓度的影响,在4种浓度的氯化铵溶液中湿筛后,直径25 mm的团聚体的含量随溶液浓度增大而减少,而0.252 mm团聚体含量明显增加。试验得到的主要结论为, 不同肥力水平土壤团聚体质量差异明显; 团聚体的化学稳定性受盐溶液浓度和肥力水平的共同作用,随氮肥溶液浓度增大,团聚体组成集中在0.252 mm的较小范围,盐分使得多级的团聚体组成向单一化方向变化; 高肥力土壤受氮肥溶液的影响相对较弱,中、 低肥力土壤对氮肥溶液的响应则较为强烈。  相似文献   
6.
关中农田土壤剖面的主要物理性状研究   总被引:6,自引:0,他引:6       下载免费PDF全文
为了探明现代长期集约化生产和耕作管理模式下土壤物理状态的变化特征,对关中地区农田0~60 cm剖面范围内的土壤物理特性进行了研究。结果显示:(1) 土壤剖面容重呈现先增大后减小的变化趋势,表层0~10 cm土壤容重最小,为1.34 g·cm-3,20~40 cm土层容重高达1.67 g·cm-3,达到了制约根系延伸的极限容重;(2) 土壤紧实度随着剖面深度增加逐渐增大,0~15 cm、15~25 cm、25~45 cm土层范围内的平均值分别为482 kPa、1 647 kPa、2 268 kPa;(3) 土壤饱和导水率随着土层深度增加而逐渐减小,其中0~10 cm土层的饱和导水率最高,平均为0.968 mm·min-1,且各土层之间的差异达到显著水平。研究表明只有0~10 cm土层土壤结构性较好,而10 cm以下土壤的物理状态具有明显的退化趋势,制约着作物根系的延伸、气体交换和水分的入渗,应予以足够的重视。  相似文献   
7.
渭北苹果园土壤有机碳库变异特征   总被引:3,自引:0,他引:3  
土壤碳库是陆地生态系统中最大且最活跃的碳库之一,是全球碳循环的核心内容.土壤有机碳的固定和矿化不仅对全球大气CO2浓度起着重要的调节作用[1],而且影响着土壤肥力及作物产量[2-3],指示着植被演替的结果和演化的趋势,倍受学术界广泛关注.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号