首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
基础科学   7篇
  2020年   2篇
  2019年   2篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
排序方式: 共有7条查询结果,搜索用时 11 毫秒
1
1.
为改善工程机器人系统的操作性,并提高在抓取和搬运柔软物体过程中的安全性,对主从遥操作系统的控制进行了研究,提出了位置速度/位置反力混合控制的方法。工程机器人在自由移动时,采用位置速度控制,工程机器人与环境间产生反馈力时,切换到位置反力控制。利用反馈力作为反馈信号,实现对力的间接控制。设计并开展了抓取与搬运柔软物体的实验,并对抓取和搬运过程中的物体最大变形量以及活塞杆平均位移进行了统计分析及配对t检测。结果表明:相比传统的位置速度控制方法,位置反力控制方法能够改善主从遥操作系统的操作性,确保在抓取和搬运过程中柔软物体的安全性。  相似文献   
2.
基于Kinect动态手势识别的机械臂实时位姿控制系统   总被引:1,自引:0,他引:1  
基于Kinect动态手势识别达到实时控制机械臂末端位姿的效果。位置控制信息的获取采用Kinect计算手部4个关节点在控制中的位置变动,数据噪声在控制中易引起机械臂误动作和运动振动等问题,为了避免噪声对实时控制的不利影响,采用卡尔曼滤波跟踪降噪。姿势控制信息通过采集手部点云经滤波处理后应用最小二乘拟合的方式获取掌心所在平面,运用迭代器降噪处理。系统通过对手部位置和姿势信息的整合、手势到机械臂空间坐标映射及运动学求解来实时控制机械臂末端位姿。实验结果证明,手势控制系统满足控制要求,简单、易于操作,机械臂实时响应速度快、运动准确。  相似文献   
3.
基于力觉控制的机器人运动系统能够通过感知外界环境的接触力,实现机器人作业过程中对力和位置的双重控制。为了提高机器人对接触力的感知精度,实现准确的柔顺控制,提出一种基于力传感器重力补偿的机器人柔顺控制方法。首先,通过调整机器人末端姿态,采集机器人不同位姿下力传感器数据,计算机器人底座安装倾角、力传感器零点数据、末端工具重力及重心坐标等参数;然后,利用机器人姿态变换矩阵,实现对力传感器的重力补偿,为机器人柔顺控制提供准确的受力感知;最后,采用导纳控制,实现机器人对物体的抓取搬运。进行了力传感器重力补偿实验及机器人柔顺放置实验,结果表明,该方法能够提高机器人对外界环境感知的精准度,实现精准的机器人柔顺控制。  相似文献   
4.
智能抓取搬运机器人能够高效、可靠地完成各种搬运任务,降低工作人员的劳动强度,精准的物体定位是机器人执行搬运任务的基础。本文研究了基于Kinect的机器人抓取系统,可实现物体的类别检测、物体定位及机器人抓取任务。抓取系统由3个子系统(物体检测系统、物体定位系统及机器人抓取系统)组成。首先利用Kinect采集的物体图像信息训练单次多盒检测(Single multi-box detection,SSD)模型,然后根据SSD模型对物体的类别进行检测,得到物体在图像中的边框,并获取边框中物体像素坐标和深度,接着通过Kinect相机手眼标定法将像素坐标和深度转换到机器人基坐标系中,实现物体的定位,最后通过机器人逆运动学求解关节角,驱动机器人运动完成抓取搬运任务。对机器人进行了物体的定位和抓取实验,实验结果表明,物体的定位误差较小,物体抓取搬运实验的平均成功率达到97%,满足物体的抓取搬运需求。  相似文献   
5.
鉴于OpenPose进行肢体识别复杂度较高,提出基于TfPose完成人体骨架提取,并采用神经网络集成学习方法对吊装指令肢体信号进行识别,完成智能化吊装操作。首先,采用D-H法对吊装机器人进行正运动学分析,确定卷扬机构工作空间范围,并使用共形几何代数方法求解其逆运动学,完成吊装机器人从当前位置运动到目标位置的数学建模;然后,基于TfPose获取人体骨架向量和RGB骨架图,以BP神经网络和InceptionV3网络为基分类器,采用神经网络集成学习方法确定最优化权重,完成吊装指令肢体信号识别;最后,将识别的吊装指令肢体信号通过UDP通信传送给吊装机器人控制模块,以完成吊装操作。实验结果表明,该方法平均肢体识别精度达0. 977,提高了吊装效率。  相似文献   
6.
鉴于Kinect相机进行肢体识别监控距离有限,提出使用网络大变焦摄像头、构建CNN-BP融合网络进行肢体动作识别,并以9组机器人吊装指令为例进行训练和识别。首先,基于OpenPose提取18个骨架节点坐标,生成RGB骨架图和骨架向量;然后,采用迁移学习方法对RGB骨架图使用InceptionV3网络提取图像深层抽象特征,并对训练数据集采用旋转、平移、缩放和仿射多种数据增强方式,以扩充训练数据,防止过拟合;再将提取的骨架向量使用BP神经网络提取点线面等浅层特征;最后对InceptionV3网络和BP神经网络输出进行融合,并使用Softmax求解器得到肢体识别结果。将肢体识别结果输入机器人辅助吊装控制系统,建立双重验证控制方法,完成机器人辅助吊装操作。实验结果表明,该方法保证了模型运行的精度和时效性,实时识别精度达0. 99以上,大大提升了远距离人机交互能力。  相似文献   
7.
为了提高主从遥操作的效率和系统的安全性,设计了能够实现主从位移控制的手控器,构建了基于虚拟墙引导主动控制模型,通过融合操作者的人工控制和机器人的视觉引导,实现机器人遥操作中主从两端的信息共享和相互引导,对手控器和从端作业机器人进行控制。通过搭建基于共享控制策略的手控器-机器人系统实验平台,验证所设想控制方法的有效性,最终实现了提升主从遥操作的作业效率,减轻了机器人对环境的瞬间冲击,提高了系统的安全性。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号