首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   3篇
  国内免费   13篇
农学   1篇
基础科学   9篇
  12篇
综合类   10篇
  2023年   2篇
  2022年   2篇
  2021年   1篇
  2020年   4篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   4篇
  2014年   2篇
  2013年   2篇
  2012年   8篇
  2011年   1篇
  2010年   1篇
排序方式: 共有32条查询结果,搜索用时 15 毫秒
1.
无源蓄冷控温运输箱设计与试验   总被引:1,自引:0,他引:1  
针对蓄冷运输箱信息化程度低、控温时间短、控温困难等问题,设计了一款集控温、远程监控、定位、故障诊断等功能于一体的蓄冷运输箱。以脐橙为试验对象,结合能耗模型,对蓄冷控温箱控温性能进行了研究。结果表明,箱内各截面温度不均匀系数分别为0.38、0.47、0.78,温度极差最大值为2.8℃,均匀性较好;当蓄冷剂用量为180 kg,预冷脐橙660 kg,在外部环境平均温度26.39℃的条件下,总控温时长为122 h,风机共执行控温21次,且随着蓄冷量减少,风机开启控温所用时间呈指数上升趋势,决定系数不小于0.928 0;结合能耗模型分析得出,该箱体在广州夏季高温环境下可控温5 d以上,能够满足远距离运输要求。  相似文献   
2.
基于多参数耦合的蓄冷温控箱冷板对流换热参数优化   总被引:2,自引:2,他引:0  
蓄冷温控箱利用低温相变材料储存冷量,通过缓慢释放调节并保持箱内温度,目前仍存在冷量释放速率无法控制、剩余冷量预测难等问题,而蓄冷板表面对流换热系数直接影响冷量的释放速率。针对以上问题,搭建了蓄冷板表面对流换热系数测量试验平台,研究不同环境及蓄冷板参数对表面对流换热系数的影响。采用二次回归正交试验设计方案,探究了蓄冷区进口空气流速、进口空气温度、蓄冷板传热面积以及蓄冷板间距对表面对流换热系数的影响,并对结果进行分析,建立了表面对流换热系数二阶预测模型,获得影响表面对流换热系数大小较显著的因素及较优的参数组合。试验结果表明:各因素间存在明显交互作用,进口空气温度和蓄冷板传热面积的交互效应最大;通过响应曲面法建立的表面对流换热系数预测模型,得到最优参数组合为:进口空气流速4 m/s,进口空气温度25 ℃,蓄冷板传热面积0.455 m2,蓄冷板间距0.04 m,R2值为0.927 4,变异系数CV为5.78%。回归模型计算结果与试验结果吻合,最大误差为3.58%,平均相对误差为2.69%,表明该模型可以快速、准确地预测不同条件下的蓄冷板表面对流换热系数。试验结果为蓄冷温控箱冷量释放速率精准调控及剩余冷量预测提供参考。  相似文献   
3.
出风道参数对冷藏集装箱温度场的影响   总被引:3,自引:0,他引:3  
结合货物多孔介质理论,建立了装有荔枝货物的保鲜集装箱三维数值模型。考虑荔枝货物及箱体物理特性,通过改变出风道风速、开孔面积和位置对制冷过程中集装箱内空气和货物温度的变化进行了数值分析,获得了箱内温度场分布特性。研究结果表明,提高出风道风速、增大开孔面积,可以促进箱内空气降温速度,并提高货物表面的温度分布均匀性;货物降温速度随出风道风速增大而增大,而与开孔面积关系不明显;出风道开孔位置对箱内空气降温速度影响不大,集中开孔形式下的货物温度降幅较其他开孔形式小。经试验验证,模拟结果与试验结果吻合较好,空气温度变化平均误差为5.05%、均方根误差为5.95%;温度分布平均误差为14.04%、均方根误差为16.48%,证明了模型的准确性。  相似文献   
4.
果蔬贮藏加湿技术研究现状与发展趋势   总被引:2,自引:0,他引:2  
果蔬贮藏环境中适当的湿度可以抑制果蔬水分的蒸发,从而减少果蔬的干耗并保持果蔬的鲜脆,延长保鲜周期.在文献检索的基础上,根据不同加湿原理,对现有加湿技术进行分类,分析在果蔬贮藏领域常用加湿装置的工作原理和组成,同时对各种加湿方式的性能进行对比,提出了加湿方式的展望,以促进该技术的发展与应用.  相似文献   
5.
香蕉保鲜环境参数的研究现状与分析   总被引:1,自引:0,他引:1  
为了掌握香蕉保鲜参数对香蕉贮藏品质的影响,对国内外香蕉保鲜参数研究进行综述,分析了温度、气体成分、相对湿度以及各参数在贮藏环境中的优先级关系.对多数香蕉品种而言,适宜的保鲜参数为:温度12~20℃,最佳温度13℃,O2浓度2%~5%,CO2浓度2.5%~7%,相对湿度85%~95%.气体成分优先级中O2浓度大于CO2浓度.  相似文献   
6.
保鲜运输车果蔬堆码方式对温度场影响的数值模拟   总被引:10,自引:7,他引:3  
温度场是保障果蔬运输品质的重要因素之一。为了解温度场的分布规律,该文以基于差压原理的运输厢体为研究对象,采用香蕉为试验物料,建立厢体的1/4等比例三维紊流数值计算模型,结合有孔模型,采用SIMPLE算法和壁面函数法,对厢体中间两侧留空、两侧留空和满载等3种果蔬堆码方式的模型进行温度场的数值计算,得出了厢体内纵截面和横截面的温度以及货物表面的温度分布图。经对比分析发现,合理的货物堆码方式可以改善厢体内温度场的分布;中间两侧留空方式较两侧留空方式和满载方式相比较,冷空气与货物的热交换好,厢体温度场较均匀。经过试验验证,模拟值与测试值平均温度偏差均不超过1.5℃,试验结果与模拟结果吻合较好。该研究揭示了果蔬保鲜车厢体内部温度场分布的一般规律,对保鲜运输车的货物堆码方式以及结构优化设计等研究有一定的参考价值。  相似文献   
7.
保鲜运输用液氮充注气调的温度调节性能优化   总被引:2,自引:2,他引:0  
为解决保鲜运输用液氮充注气调产生的果蔬低温伤害问题,建立了液氮充注气调试验装置,通过改变液氮罐出液阀孔径、汽化盘管长度、横管开孔方向、开孔隔板开孔率、通风风速、回风道长度等因素,研究各因素对液氮充注温度调节性能的影响,优化液氮充注气调的温度调节性能。结果表明:当液氮罐出液阀孔径为1.5mm,汽化盘管长度为4m,横管开孔吹向风机,开孔隔板开孔率为4.03%,通风风速为8m/s,回风道长度为1.5m,厢体内氧气体积分数自20.95%降至5%时,液氮气调的温度调节性能较优,开孔隔板出气口最大温差仅为1.3℃,开孔隔板出口处与回风道内的最大温差仅为2.72℃。液氮充注气调在43min内可快速将厢体内氧气体积分数由20.95%降至5%,还可利用液氮的冷量为保鲜环境降温。研究结果对果蔬液氮气调保鲜运输车的设计具有一定的参考价值。  相似文献   
8.
基于传热传质的荔枝预冷果温和质量损失率预测   总被引:2,自引:0,他引:2  
为掌握荔枝预冷过程传热传质规律,以果蔬气调保鲜试验平台为研究对象,依据热力学和水分迁移理论,建立了荔枝果实预冷过程传热传质数学模型,获得了果实在预冷过程中温度、质量损失率等参数的变化情况,分析了果实质量、初始温度对预冷时间、质量损失率变化的影响。经计算发现,同一堆放方式下,荔枝果实质量越大,果实失水速率越小;当荔枝果实质量为10 kg时,果实平均温度从25℃降至5℃约需350 min,平均质量损失率为2. 16%;果实初始温度低,可以减缓果实质量损失率上升。经试验验证,计算结果与模拟结果吻合较好,对应时刻果实温度最大偏差为2. 8 K,平均相对误差为13. 1%;质量损失率计算值与试验值最大偏差小于0. 3%,平均相对误差为10. 7%。  相似文献   
9.
集中通风式分娩母猪舍温湿度数值模拟与试验验证   总被引:1,自引:1,他引:0  
为研究集中通风式猪舍温湿度场的分布规律,利用计算流体力学技术,对云南省某规模猪场的地沟进风、中央排风式分娩母猪舍进行温湿度场耦合模拟研究,并通过试验进行验证。本研究采用四面体非结构网格进行网格划分,运用重整化群RNGk-ε湍流模型进行稳态模拟,通过实测值与模拟值的对比,对模型进行验证。研究结果表明,温度模拟值与实测值最大差值不超过4℃,平均相对误差为6.5%;相对湿度模拟值与实测值最大差值不超过10%RH,平均相对误差为7.3%,验证了模型的准确性。温度、相对湿度和风速在垂直高度上的分布差异较大,温度随着垂直高度的增加而增加,且温度梯度逐渐增大;相对湿度随着垂直高度的增加而减小;而风速则随着垂直高度的增加而逐渐减小。本研究揭示了集中通风式分娩母猪舍的温湿度场分布规律,并为分娩舍温湿度场的优化提供参考。  相似文献   
10.
CO2气体是温室作物光合作用的重要原料之一。为掌握温室CO2气肥增施性能,以温室CO2气肥增施为研究对象,采用计算流体力学(computational fluid dynamics,CFD)技术建立二维紊流数值计算模型。基于FLUENT软件,结合SIMPLE算法,采用有孔介质模型、k-ε模型、离心坐标(discrete ordinates,DO)模型,添加组分传输模型,对气肥喷射高度、气肥增施流量等因素对CO2增施性能进行数值模拟,得到温室内CO2浓度变化和分布规律。研究结果表明:气肥增施过程对作物区的温度场影响较小,温室的作物区域最大温度与最小温度差值不超过0.5℃,作物区域的气流流场以及温度场分布较为均匀;由于CO2的沉积效应,温室下部区域的CO2浓度相对较高;气肥喷射高度越高,CO2扩散的范围越大,沉积在作物区的CO2相对越少,CO2的浓度也相对较低;气肥增施流量越大,作物区域的CO2浓度上升越快。试验结果表明,CO2浓度模拟值与试验值差异不大于5%,模拟结果与试验结果较吻合,证明了模型的正确性。该研究对掌握温室CO2气肥增施性能的流场变化规律,开展温室气肥增施装备的优化设计具有一定的参考价值。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号