首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
基础科学   7篇
综合类   1篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2014年   5篇
排序方式: 共有8条查询结果,搜索用时 0 毫秒
1
1.
为探究利用高光谱植被指数反演叶片总初级生产力(GPP)的模型,以湖北省武汉大学试验田油菜和小麦叶片高光谱反射率和光照强度(PARin)为数据源,利用7种植被指数与PARin的乘积分别反演2种植被叶片GPP,构建线性及非线性回归模型,并对模型进行验证。结果表明:1)从油菜生理特点出发,需要分生育期建模。在选择的7种植被指数中,花期SR构建的一次模型效果最优,建模和验模R2分别为0.80和0.82,RMSE不超过2.85g/(m~2·d);荚果期选择CIred edge和MTCI为优选模型,建模和验模R2为0.84和0.72,RMSE3.91g/(m~2·d);全时期基于红边波段的CIred edge、MTCI为优选模型,建模集R2达到0.80,RMSE3.67g/(m~2·d),验模R2达到0.65,RMSE3.92g/(m~2·d);2)小麦中NDVI模型效果最优,建模集R2=0.59,RMSE=2.80g/(m~2·d),验模R2=0.67,RMSE=3.39g/(m~2·d)。将油菜与小麦做对比,基于红边波段的植被指数CIred edge和MTCI对2种植被差异不敏感,R2为0.72~0.73,表明CIred edge和MTCI模型可以用于小麦和油菜叶片GPP的统一反演。  相似文献   
2.
不同流量工况下斜流泵内部流场PIV试验   总被引:1,自引:0,他引:1  
为了探索斜流泵的内部流动特性并优化斜流泵设计,基于粒子图像测速技术(PIV)对斜流泵内部流场进行测量,分析了不同相位叶轮截面处的流线和速度分布以及小流量工况下的涡量分布。研究结果表明,在小流量工况下,由于受到叶片压力面旋涡流动和吸力面脱流的影响,叶轮内部的流动呈现径向运动趋势,且流动紊乱;随着流量增大,叶轮流场流线逐渐向轴向方向移动并沿着轮毂轮廓线流动,在大流量工况下叶片压力面附近靠近端壁处形成明显的旋涡结构。0.6倍流量工况下,当叶轮进口进入拍摄断面时,在叶轮内部形成一个顺时针旋转的负涡;当叶轮出口进入拍摄断面时,在导叶进口外缘出现正向涡量集中区域,且随着叶轮的转动该区域向导叶进口方向移动;当叶片出口远离拍摄断面时,在导叶进口处出现负涡量区,揭示了斜流泵叶轮和导叶动静相干过程中能量损失的内在原因。  相似文献   
3.
采用SST k-ω湍流模型模拟和旋涡强度方法,对某一轴流泵模型泵叶轮叶顶区流场和叶顶泄漏涡轨迹进行了数值计算,分析了运行工况和叶顶间隙两个因素对轴流泵叶顶泄漏涡运动轨迹的影响.数值模拟结果表明,随着流量增大,轴流泵叶顶泄漏涡的涡核轨迹起点由叶尖向叶片翼型中部逐渐移动.随着流量的增大,叶片流道内的流动方向发生偏移,叶顶泄漏涡在主流的卷吸下,运动轨迹随之变化,涡轨迹线的斜率受叶轮内主流的影响而变大.随着叶顶间隙增大,泄漏涡的卷吸程度逐渐增强,影响范围增大,涡核的起点由叶片前缘逐渐向后缘移动,且涡核的压力逐渐降低,因此在大间隙时涡带更易出现空化现象.当叶顶间隙达到1.5 mm时,轴流泵在0.9Qd工况附近出现驼峰现象,说明叶顶泄漏涡对驼峰区不稳定流场具有重要的影响.  相似文献   
4.
轴流泵多工况压力脉动特性试验   总被引:6,自引:0,他引:6  
为了掌握不同流量工况下的轴流泵压力脉动特性,在轴流泵叶轮段和导叶段外壁面布置了6个压力脉动监测点,对多个流量工况的压力脉动进行了动态测量,揭示了轴流泵内部不同位置处压力脉动规律。试验结果表明,叶轮进口监测点P1的波形为规则的正弦波形,叶轮内部中间测点P2的压力脉动峰峰值最大,叶轮进口监测点P1压力脉动次之。叶轮进口、叶轮中间和叶轮出口监测点由于受到叶轮内压力梯度的交替变化影响,时域脉动周期与叶片旋转周期一致,在小流量工况下叶轮内部涡流诱导了明显的二次谐波。基于快速傅里叶变换,获得了不同监测点压力脉动频域分布结果,并发现叶轮区域3个压力脉动测点在不同工况的主频均为叶片通过频率(BPF),谐频为叶频的倍数,其幅值呈指数形式衰减。但在导叶进口、导叶中间和导叶出口监测点的压力脉动频域中出现了撞击和回流诱导的低频信号,同时也存在叶轮的主频及其谐频。  相似文献   
5.
不同空化数下轴流泵叶顶间隙区空化特性   总被引:1,自引:0,他引:1  
基于修正的SST k-ω湍流模型和空化模型,对叶顶间隙为0.5 mm轴流泵模型进行了数值计算,分析了不同空化数下叶顶区不同圆柱截面的空化面积、叶轮出口轴向速度以及叶顶区空泡体积分数等特性。数值计算与高速摄影试验结果表明,数值模拟方法准确预测了轴流泵NPSH曲线和叶顶区空化流场;轴流泵初生空化出现在叶顶区,其空化类型主要包括刮起涡空化、泄漏流空化、卷吸区空化及叶顶泄漏涡空化;在空化数为0.451时,叶顶泄漏涡具有明显的涡带空化特性,随着空化数的逐渐降低,叶顶泄漏涡卷吸区的空化范围逐渐扩展,并与泄漏流空化区连成一片,且空泡云扩展到整个叶片吸力面;在间隙泄漏流作用下,叶轮出口轴向速度在靠近间隙区域逐渐降低,并随着空化数减小,轴面速度进一步下降;在不同空化数下,叶片吸力面圆周截面空化面积系数从轮毂到轮缘先增大,在叶片中部达到最大值,然后迅速减小,在叶顶区由于受到间隙效应的影响,叶顶区空化面积迅速增大。  相似文献   
6.
为了研究轴流泵内部流动数值模拟中不同湍流模型的适用性,分别采用standard k-ε模型、RNG k-ε模型、SST k-ω模型以及大涡模拟(LES)方法,基于结构化网格与网格滑移技术,对叶轮直径为200 mm、名义比转数ns为700的模型轴流泵进行了性能预测和全流场数值模拟;计算了水泵的扬程和效率,并与在水泵试验台上测试得到的外特性结果进行了对比和分析.结果表明,在最优工况附近,standard k-ε模型、RNG k-ε模型和SST k-ε模型都能较精确地预测轴流泵的外特性,基于RNG k-ε湍流模型的扬程和效率误差相对较小;在非设计工况下,不同湍流模型具有不同的特性.在0.8Qopt,1.0Qopt和1.2Qopt工况下,针对叶轮与导叶间的轴向间隙处进行了PIV内部流场测试;将各个湍流模型下的数值模拟结果与PIV的测量结果进行比较,发现基于雷诺时均方程的3种湍流模型的内流场流线与PIV的测量结果进行比较,发现基于雷诺时均方程的3种湍流模型的内流场流线与PIV的试验结果具有基本相同的趋势性,从而证明了数值模拟计算的可靠性和有效性;而采用LES计算得到的流场与PIV测量结果产生一定的偏差.同时,对轴流泵在不同流量工况下内流场的流动结构进行了分析.  相似文献   
7.
轴流泵内部流场较为复杂,尤其是端璧区的叶顶泄漏,不仅能破坏叶轮进口流场,而且对叶轮流道内流场也有较大的影响.采用CFD数值计算与PIV试验研究相结合的手段,对叶轮进口附近流场进行研究,以揭示其流动机理.PIV结果表明:在1.2Qopt和1.0Qopt工况下的流线及速度云图分布较为均匀,而0.8Qopt工况下,外缘壁面靠近叶片进口边处出现低速区,且流线向轮毂侧偏转.数值计算结果表明:预测外特性结果与试验相吻合,叶轮进口的流场也与PIV结果一致;另外,在1.2Qopt工况下,5%叶顶高处的间隙内部流动方向与主流一致;1.0Qopt工况下,流体基本沿周向运动;当流量减小到0.8Qopt时,出现叶顶泄漏,并在间隙内靠压力面侧形成分离后再附着的现象,在吸力面一侧受泄漏流与主流碰撞及相互卷吸的影响,形成一个逆时针方向的旋涡.  相似文献   
8.
轴流泵叶顶泄漏涡流体动力学特性数值模拟   总被引:1,自引:0,他引:1  
基于SST k-ω湍流模型和局部优化的高质量结构化网格,对南水北调工程天津同台测试的TJ04-ZL-02型轴流泵水力模型进行了数值计算,并探究了叶顶泄漏涡的流场结构和流体动力学特性。数值计算和试验结果表明,基于SST k-ω湍流模型可准确地对间隙泄漏流和边界层流动进行数值模拟;叶顶泄漏涡形成的动力为叶片工作面和背面的压差,由于叶片进口边压差最大,叶顶间隙泄漏流的流速较高,随着叶片弦长系数λ的逐渐增大,叶片工作面和背面之间的压差逐渐减小,间隙泄漏流的速度和泄漏涡强度均逐渐降低;叶顶区的局部低压区主要集中在靠近压力面间隙内分离涡的旋涡区以及叶片背面下部叶顶泄漏涡区域,叶片背面局部低压区域随着叶片弦长系数λ的逐渐增大,距离叶片背面的间距增大;叶片轮缘靠近叶片工作面附近的局部低压区主要是由叶顶拐角诱导的分离涡引起,而叶片下部的局部低压区主要是由叶顶泄漏涡引起,上述过程揭示了轴流泵叶顶间隙泄漏涡的流动特性。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号