首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   1篇
  国内免费   1篇
基础科学   2篇
  1篇
农作物   1篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
无人机载多光谱遥感监测冬油菜氮素营养研究   总被引:1,自引:0,他引:1  
为探索无人机搭载的多光谱相机对冬油菜冠层氮素营养状况监测的可行性,设置9种施氮水平的油菜试验小区,获取八叶期、十叶期、十二叶期和蕾臺期的多光谱影像,同步采样分析获取地上部生物量、叶片氮浓度和氮素积累量等氮营养指标。以宽波段植被指数和氮营养指标的相关性为基础,通过敏感性分析确定最佳指数,建立预测模型并进行精度验证。结果显示,宽波段植被指数与氮营养指标有极显著的相关性,不同生育期差异明显。其中,红光标准值和蓝光标准值在蕾臺期均与各氮营养指标相关关系最好,且敏感性因子的值小而稳定。进一步研究表明,三种指标均可用红光标准值和蓝光标准值建立的二次模型进行估计,决定系数R2均大于0.85,模型精度较高,说明无人机多光谱遥感能有效辅助冬油菜氮素营养监测。  相似文献   
2.
冬油菜叶面积指数高光谱监测最佳波宽与有效波段研究   总被引:4,自引:0,他引:4  
以冬油菜为研究对象,利用连续3季(2013—2016年)不同氮营养水平下冬油菜关键生育期400~1 350 nm冠层高光谱和LAI数据,研究基于偏最小二乘(Partial least square,PLS)回归分析的冬油菜原初光谱(Raw spectral reflectance,R)及一阶微分光谱(First derivative reflectance,FDR)窄波段光谱变量(1、5、10、20 nm)和宽波段光谱变量(40、80、100 nm)与LAI之间关系,确定可稳定指示油菜LAI时空变化的最佳波宽及其有效波段。在此基础上,进行了基于有效波段最优波宽下冬油菜LAI预测和精度验证。结果表明,冬油菜LAI对氮肥响应具有高度敏感性,可较为充分反映油菜LAI时空变化,其建模集和验证集变异系数分别为65.4%和54.4%;随波宽增加,基于R-PLS和FDR-PLS回归模型的冬油菜LAI预测精度均呈先增加后降低趋势,至窄波段光谱变量和宽波段光谱变量临界处20 nm波宽时达最高,且FDR-PLS预测效果显著优于R-PLS,建模集和验证集相对分析误差(Relative percent deviation,RPD)分别为2.223和2.004。根据FDR-PLS回归模型中各波段变量重要性投影值(Variable importance for the projection,VIP),确定基于该最佳波宽条件下油菜LAI有效波段分别为759、847、921、1 002、1 129 nm。此后,再次构建基于上述有效波段的油菜LAI预测模型,建模集和验证集RPD分别为2.004和1.707,反演效果较为理想。  相似文献   
3.
该文以水稻田间氮肥水平试验为基础,采用单变量的线性和非线性回归方法,建立基于植被指数的水稻色素含量高光谱估算模型。各植被指数对色素含量的估计能力分析结果显示,植被指数在色素含量较大时存在饱和问题,为此尝试将波段深度分析(BDA)与BP神经网络结合,以提高利用高光谱技术对水稻叶片色素含量的估算精度。基于连续统去除处理的水稻冠层高光谱数据(400~750 nm),选取波段深度(BD)、波段深度比(BDR)、归一化波段深度(NBDI)和归一化面积波段指数(BNA)4种波段指数,在此基础上进行主成分分析(PCA)实现降维,然后采用反向传播(BP)神经网络方法对水稻叶片色素含量进行高光谱反演,探讨BDA与BP神经网络结合解决植被指数饱和问题的可能性和有效性。结果表明,波段深度分析突出了光谱吸收特征差异,挖掘了更多的潜在信息,使得光谱曲线的差异性得到增强。BD与BP结合的估算模型对水稻叶片中的类胡萝卜素含量估算精度最高(R~2=0.61,RMSEP=0.128 mg?g~(-1)),BNA与BP结合的估算模型对水稻叶片中的叶绿素含量估算精度最高(R~2=0.73,RMSEP=0.343 mg?g~(-1))。对比分析BDA与BP结合的模型和植被指数最佳回归模型的精度,发现波段深度分析建立的BP神经网络模型能较好地解决饱和问题,提高水稻叶片色素含量的估算精度。  相似文献   
4.
基于角果期高光谱的冬油菜产量预测模型研究   总被引:3,自引:0,他引:3       下载免费PDF全文
以连续3 a田间氮肥水平试验为基础,研究基于高光谱估产的可行性,明确最佳光谱监测方式和有效波段,降低光谱分析维数,提高产量估测时效性。2013—2016年分别于湖北省武穴市和沙洋县进行大田试验,通过测试角果期冠层光谱反射率、产量构成因子(单株角果数、每角粒数和千粒质量)和成熟期产量,利用偏最小二乘回归(PLS)分别对油菜原初光谱(RSR)和一阶微分光谱(FDR)与其产量及构成因子间构建定量分析模型并筛选有效波段。结果表明,基于全波段的FDR-PLS模型预测精度显著优于R-PLS,其最佳监测指标是冬油菜产量和角果数,验证集决定系数(R2)分别为0.90和0.91,均方根误差(RMSE)分别为379 kg/hm2和66个/株,相对分析误差(RPD)分别为3.11和3.12。基于各波段变量重要性投影(VIP)值,确定冬油菜产量有效波段分别为628、753、882、935、1061、1 224 nm;角果数有效波段分别为628、758、935、1 063、1 457、1 600 nm。此后,再次构建基于上述有效波段的冬油菜产量和角果数监测模型,决定系数分别为0.91和0.87,均方根误差分别为504 kg/hm2和82个/株,相对分析误差分别为2.34和2.52,估算精度较为理想。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号